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ABSTRACT 9 7 G ‘-/ 6

A one dimensional model is developed to représent flooded
porous electrodes in which there 1s no bulk flow of electrolyte
in the pores. In this representation the pore configuration
1s ignored and the entire electrode treated as a homogeneous
macroscopic reglon of electrolyte with distributed current and
specles sources. Mass transport in the electrolyte by diffu-
sion and migration is considered. No assumptions of uniformity
of electrolyte conductivity or composition are made. The madel
1s capable of incorporating electrode reaction overpotential
expressions of qulte arbilitrary nature.

Analysis of the model is conducted by numerical techniques
to furnish descriptions of electrode behavior for both steady
state and translient operation. Performance characterization
includes electrode overpotential and current and concentration
distributions as functions of current drain and system para-
meters. The computational procedure is implemented on digital
computing machinery.

Examples based on the cadmium anode in SN KOH and on the
ferri-ferrocyanide electrode in 2N NaOH are 1investigated. 1In
these examples overpotential relationships incorporating both
forward and reverse reaction terms are used and the 1inade-

quaclies of approximations to these relationships are

demonstrated. 762;%(0;//
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1. TINTRODUCTION

The operation of electrochemical cells requires that a
heterogeneous reaction involving charge transfer occur at
the interface between the electrolyte phaée and the electrode.
Since the rate of such a reaction per unit interfacial area
is 1limited by the kinetics of the reacting system, the total
rate of reaction for the electrode, and thus the electrode
current, 1s dependent upon the extent of the interface. There-
fore, electrodes with extended active surface, usually in the
form of porous solids, find wide application, particularly in
electrochemical energy conversion devices. It is important
to be able to characterize theilr behavior.

A porous electrode consists of a connected matrix of an
electrically conducting solid material (or mixture of materials)
interspersed with connected voids, or pores, the characteristic
dimensions of which are small compared with the overall size
of the electrode. Such a matrix may be formed by compaction
or sintering of granular material, by selective dissolution
of a heterogeneous solid, or by mechanical shaping and construc-
tion. The voids or pores of the electrode are filled in part
or cémpletely with the electrolyte solution, in certain cases
a portion of the pore volume being occupled by a more or less
connected gas phase. Electrical contact is made by appropriate
means to the electrode matrix and the exterior surfaces of
the electrode are maintained in contact with the bulk electro-

lyte (and gas phase if one is involved). This arrangement



is 1llustrated schematically in Figure 1 where an electrode
without gas phase (flooded) is shown in (a), one involving a
gas phase in (b).

The electrode reaction takes place almost exclusively
in the pores, the external surface area being small with
respect to pore wall surface. The primary chemical reactant
may be supplied in the solid matrix, in the electrolyte, or
in the gas phase, if present. The first-mentioned source of
supply 1s appropriate to batteries (primary or secondary);
the second and third to fuel cells. The reaction product may
also occur in either the solid, electrolyte, or gas phases.
The reaction is distributed over the walls of the pores, the
rate at any point being dependent upon the conditions of
potential, species concentration, etc., prevailing at that
location. 1In turn, the potential and species concentrations
at any point in the electrode are governed by the processes
of transport of current and speciles, respectively, to and
from that point. Thus, in principle, the rate of reaction at
any position 1n a porous electrode, conveniently expressed
as rate per unit volume or transfer current per unit volume,
can be determined from the conditions to which the electrode
is subjected. Knowledge of distribution of electrode reac-
tion, at any time, is necessary for complete characterization
of electrode behavior.

The prediction of the performance of porous electrodes
is of considerable interest, because a knowledge of their

behavior under varying conditions of operation is essential
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to rational design and construction of those electrochemical
systems which contain such electrodes as elements. Devices
making use of these electrodes include all batteries of
current commercial importance as well as most other electro-
chemical energy converslon techniques under investigation or
in development. One need only cite such widespread applica-
tions as the lead-acld and nickel cadmium storage batteries,
the silver-zinc and other primary batteries, and the vast
majority of fuel cell types as examples.

With emphasis being placed on high energy density
electrochemical devices, as for space vehicle applications,
and upon perfecting of practicable fuel cell systems, the
need of reliable methods of analyzing porous electrode be-
havior becomes increasingly important. The wide variety of
systems involved and the range of parameters to be considered
indicates that something more than a purely empirical approach
i1s desirable. Theoretically based prediction techniques for
characterization of the performance of such electrodes are
necessary. Such methods of analysis as have been presented
in the literature to this time are largely valid only for a
very limited set of systems, and then only under steady state
conditions. Procedures are required which are applicable to
a large variety of electrode systems and which treat dynamic,

as well as static, electrode operation.

1.1 Problem Description

It 1s the purpose of this dissertation to define a model

for the flooded porous electrode, and from analysis of this



model to develop a procedure for characterizing the dynamic
behavior of the electrode, subject to a set of parameters
defining system conditions.

In investigating porous electrodes, the consideration
of the actual geometrical configuration of the matrix (or
equivalently, of the pores) would lead to overwhelming com-
plexity. Since most such configurations are highly random,
the very characterization of the pore geometry is extremely
difficult. Extensive simplification would be necessary,
turning to consideration of specific, idealized geometrical
arrangements (e.g., cylindrical pores). Although models based
on such simplified configurations are possible, and in some
ways convenlent, another approach has been adopted in this
study: that 1s the utilization of the one dimensional porous
electrode model. In this model the configuration of the
porous body 1s ignored, and the entire electrode is treated
as a homogeneous macroscopic region of electrolyte with a
distributed current (and reacting species) source or sink
representing the reaction occurring at the electrode-elec-
trolyte inferfaces. All gradients perpendicular to the over-
all direction of current flow (parallel to the face of the
electrode) are disregarded. Thus a representation for the
porous electrode 1is derived in which the varilables are func-
tions of only one space dimension, that normal to the electrode
face. This model is well sulited to the investigation of the
distribution of current and species concentration in depth

in the electrode, and of the gross overpotential of the
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electrode. It is a valuable approximation which is amenable
to theoretical treatment. It should be noted that the one
dimensional model can be applied to situations in which
idealized geometry in fact exists, for instance to cylindrical
or fissure type pores, so long as the transverse dimensions
of electrolyte containing portions of the structure are small.

For the one dimensional model to have validity, it is
requlred that the electrode be macroscopically uniform and
that characteristic dimensions of the matrix structure
(e.g., grain size) be small compared to distances over which
there is significant varlation in concentrations or potential.
That 1s to say, an averaging over the local complexities of
the system must be permissible. Because of the very small
pore dimensions in most electrodes of interest ( of micron
order), these conditions quite commonly exist. Then the one
dimensional approach should be fully as valid as any con-
sidering a highly idealized pore geometry in two (or more)
dimensions.

This nature of model has been treated quite extensively

in the 1iteraturess’ 13,15-19

but always under additional
restrictions. These include assumptions ofluniformity of
species concentrations and electrolyte conductivity, of
unrealistically simple local overpotential expressions, and

of absence of migration of reacting species. Each such sim-

- 1 2 PR S §

pliification reduces the range of cases covered, sometimes
to the extent that no real systems are even approximately

described. However, interesting qualitative conclusions
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can be, and have been, drawn from such restricted models.

1.2 Previous Work

Previously published work devoted to analysis of
behavior of porous electrodes can be divided into treat-
ments applying to flooded systems and treatments of gas
electrodes. Only the former will be considered here. These
investigations are almost entirely based upon some type of
analysis of a one dimensional model, as described above,
although in several instances the true nature of the model
was apparéntly not recogniéed. In a few cases experimental
results are cited to confirm certain aspects of the results
of the analysls, but no successful empirical characterization
of distribution of reaction in a porous electrode has been
published.

The principal contributions to the analysis of flooded
porous electrodes are reviewed briefly in this section.

The basic assumptions involved and type of results obtalned
are described, although the results themselves are not re-
produced. Limitations upon applicability of the treatments
are evaluated where results are of such a form that they
might be applied to characterization of electrode performance.
The papers are mentioned chronologically, except for a few
cases where several related articles of a single author are
grouped.

1,2,3,

Fischbeck and Einecke In the consideration of electro-

chemical reduction of solid materials in the late 1920's,

Fischbeck and Einecke were led to the examination of the
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porous nature of their electrodes, and the possible effects

of such nature, by the unusual behavior of certain chromite
electrodes. They discussed the phenomena only briefly and

in the context of a solid matrix of sufficiently low con-
ductivity so that its particles acted as intermediate
electrodes. No attempt at analysis was made, but they recog-
nlzed the significance of local conductivity and overpotential
and observed and commented on non-uniform distribution of
reaction in porous electrodes.

Daniel—Bekh4: Daniel-Bekh, in 1948, initiated a series of

investigations of porous electrodes in the Soviet Union. He
defined a model which embodies most of the features of the

one dimensional approach used in this present investigation.
Specifically, he represented the electrode by parallel current
paths, in the solid and 1n the electrolyte, each characterized
by a constant conductivity. Current transfer between the
paths, that is electrode reaction, was governed by an unspecil-
fied overpotential relation, with the overpotential assumed

a function of transfer current only. Then the transfer cur-
rent at any point along the path was shown to be proportional
to the second derivative of the potential difference between
the paths at that point. Daniel-Bekh developed this model

for plane and for cylindrical electrode configurations. He
realized that species concentration would not be constant

in the pores of the electrode but dismissed this effect with

a vague reference to accounting for it by use of diffusion

potentials.
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In order to use thils model to characterize current
distribution in the electrode, Daniel-Bekh relied on
experimentally measured potential distributions for the
electrodes, rather than introducing overpotential expres-
sions in his equations and directly calculating distributions.
These potentlals were measured by use of a Luggin capillary
probe inserted in the electrolyte in a 0.3 mm hole drilled
into the porous electrode. Although this method eliminates
the requirements for known overpotential relationships and
for difficult mathematical operations, it 1s unsatisfactory
for several reasons: the accurate measurement of the poten-
tlals 1s very difficult; the presence of the hole and the
probe (inserted from the face of the electrode) destroys the
electrode structure and creates a false environment at
the point of measurement; and the double differentiation of
an empirical potential curve introduces additional gross
errors. In spite of its shortcomings, this work represents
a valuable contribution through establishing the essential
features of the one dimensional model.

Coleman5’6:

In a paper published in 1946, Coleman presented
a model for current distribution 1n the porous cathode of
the Leclanché cell. This was essentially one dimensional

in nature and was based upon application of Kirchoff's Laws
to a current path. The path proceeds from one point in the

matrix, through the matrix to another such location, then

over into the electrolyte and, in this phase, back to the
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starting point (there transferring again to the matrix).
Coleman considered his matrix as made up of two kinds of
particles, carbon black which carried the current and MnO2
at which transfer took place, and assigned a constant conduc-
tivity to each, as well as to the electrolyte. However, he
lgnored any conslderation of the local overpotential at the
point of current transfer and investigated his model only

for the unlikely cases of uniform potential and of uniform
current distribution in the electrode. 1In a later paper (1951)
Coleman described the results of experiments in which Leclanché
type cathodes were divided into three sections (plates 1 cm
thick) each provided with a connection for passage of current.
Through external resistors various matrix resistances were
simulated and current distribution (among the three sections)
measured. A modification of the earlier Kirchoff's Law model
was appllied to this three-section case but experimental and
calculated results were not in agreement. These treatments

are principally of historical interest and contribute little

to the progress of porous electrode analysis.

7,8,9,10,

Ksenzhek and Stender A serles of articles by Ksenzhek

and Stender during the years 1956 and 1957 analyzed the be-
havior of a porous electrode containing electrolyte of a
uniform concentration. Initially during the consideration of
specific surfaces of porous electrodes and their measurement,
these authors developed a one dimensional model with uniform

electrolyte conductance (and no matrix resistance), utilizing
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an overpotential relationship with transfer current propor-
tional to hyperbolic sine of overpotential.7 From this
model an approximate expression for gross electrode over-
voltage as a function of time (for periods short compared
to charging times) was derived. Shortly thereafter the
analysis was extended to predict current distribution in a
porous electrode of infinite thickness at steady state for
the same model.8 Later the model was reinterpreted as
applying to the interior surface of a tubular electrode,
although in fact it was not modified at all, and solutions
for local overpotential for an applied sinusoidal alternating
current were derived.9 This interpretation permitted experi-
mental verification by use of the interior of a nickel
plated metal tube as the working electrode, measuring local
overpotential with a capillary probe inserted into the tube.
Agreement of results with the theory was quite good, but
the size.of the tube used (about 8 mm) precludes any real
comparison with porous electrode behavior. In the final
paper in thls group, Ksenzhek derived an equivalent activa-
tion energy for the overall porous electrode reaction from
the steady state results previously obtained.10
This work constltutes a considerable advance in the
one dimenslonal treatment of porous electrodes. Here, for
the fifst time an overpotential relationship is used in the
equation system. The approach is, however, severely limited
by the assumption of uniform species concentrations in the

electrode, a condition that is obtalned only on initial
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completion of a circuit or under AC loading. The transient
results are likewise applicable only to sinusoidal or initial
fransient loadings. These conditions are not compatible

with studies of behavior of electrochemical energy conversion
devices but may be encountered in certain types of investi-

gations of porous media.

Perskaya and Zaidemanllz The porous electrode in which

reactant is supplied entirely by diffusion in the electrolyte
was examined by Perskaya and Zaideman. A redox type over-
potential was used and anodic and cathodic diffusion currents
assumed equal. The analysis led to a gross overpotential
relationship for the porous electrode which was further sim-
plified to an equivalent electrode transfer resistance at
vanishing electrode current, given as a function of electro-
lyte resistance, diffusion limiting current, and overpotential
parameters. This transfer resistance was compared with

good agreement with experimental results measured for Fe2+,

Fe:,)+ system in acid solution.

Euler and Nonnenmacherlzz The treatment by Euler and

Nonnenmacher, published in 1960, employed the same basic

one dimensional porous electrode model as the previous authors
but, for the first time, indicated the assumptions inherent
in its use. The primary concern of these authors was the
carbon-MnO2 porous electrode and this sytem éerved as a

source of parameter values i1n fheir development. Constqnt
conductances were assumed for the matrix and for the electro-

lyte. Effects of specles concentration variation in the
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electrolyte were disregarded, and the overpotential rela-
tionship was represented by an equivalent transfer resis-
tance (linear overpotential). For this model analytic
solutlons were derived and several examples calculated.
Because.of the emphasis in application to car'bon—MnO2 elec-
trodes, the effect of low conductivity electrode matrices
was stressed.

Euler and Nonnenmacher also described their measurements
of gross overpotential of thin carbon—MnO2 electrode layers
and presented results extrapolated to a vanishingly thin
electrode. This extrapolated behavior was used to calculate
the effective "volume conductivity" for transfer current
which served as the basis of their overpotential relationship
in the theoretical analysis. No comparison between calculated
and measured results was possible because of dependence of
calculated overpotential on the polarization parameter
(selected from empirical results).

This article, although not basically different from those

of Ksenzhek and Stender7’8’9

» presents a clear derivation
of the one dimensional model for tﬁe case of uniform elec-
trolyte concentration. The resulting expressions for steady
state current distribution clearly illustrate the effects

of electrolyte and matrix conductivity. The value of these
results is, however, gomewhat limited, since they are based
on the use of a "volume conductivity” which is constant,

independent of transfer current density, although the pub-

lished measurements demonstrate the strong dependence of this
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"conductivity" on transfer current. Nevertheless, the
authors! insight into the nature of the problem makes a
significant contribution to the investigation of porous
electrode phenomena.

13

Buvet, Guillou, and Warszawski Buvet and his coauthors

presented an extensive discussion of porous electrode reac-
tions and a classification of these reactions based on method
of reactant supply. They went to considerable effort to jus-
tify the existence of a non-uniform transfer éurrent distri-
butlon in a porous electrode and then developed a one
dimensional electrode ("column electrode") model for the case
of constant conductivity of the electrolyte (the matrix is
taken as nonresistive) and uniform specles concentrations in
the electrode. Two types of overpotential relationships were
considered, a step function (zero or constant) overpotential
and a linear overpotential expression. Both cases were solved
for expressions giving gross overpotential for the electrode
and potential distribution in the electrolyte.

The essential results of this work are mere restatements

12 for electrode matrices

of those of Euler and Nonnenmacher
of no resistance.

14’15: In a study characterizing the pore dimensions

and surface area of MnO2 electrodes, Euler examined the effec-
tive electrical capacitance of the electrodes for various
frequencies of applied alternating current.14 In this appli-

catlon concentrations of species in the electrolyte were



constant since no direct current was passed. The result

of primary interest in connection with porous electrode
analysis 1s the value of the time constant for surface
capacitance effects, measured at around 10"'5 sec. Another
investigation by Euler, this time into alteration of the
potential profile in porous electrodes (again MnOZ) during
discharge, was based on a one dimensional model with the
assumption of uniform current distribution. It was then
assumed that current dlstribution changed from some initial
distribution (as from e.g. Euler and Nonnenmacherlz) to the
final uniform condition with a "buildup" of this profile.
The course of this development was not analyzed. An experi-
mental model consisting of a one dimensional network of
resistors and Leclanché cells was developed and the altera-

tion of current distrlbution among the branches of thls net-

work used to simulate behavior of porous electrodes during

discharge.
Ksenzhek16’17: Extending his earlier work with porous elec-
trodes7’8’9’1o, Ksenzhek consldered two further special

cases of the one dimensional porous electrode model. In
considering diffusion controlled electrodes, he assumed
reactant supply by diffusion from the surface of the elec-
trode nearer the counterelectrodels. He further assumed
conditions of operation whereby the potential in the elec-
trolyte within the pore structure was essentially constant.
Thus the analysis of the distribution of current in the

electrode reduced to that of distribution of a heterogeneous

19
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chemical reaction in a porous material (with potential as a
parameter of the rate expression) and results from this
fileld were introduced. Ksenzhek also recognized the con-
current effect on electrode behavior of the transport of
reactant from the bulk of the solution through an effective
diffusion layer on the surface of the electrode. Results
were developed as gross overpotential curves for electrodes
of various specific surface areas and as effective depths of
penetration of reaction into the electrode. In discussion
of the applicabllity of his steady state solutions, Ksenzhek
explored the relation between time constants for electric
charging of surface capacilitance and for diffusion supply

of reactant, showing the time for the former effect to be

on the order of 10~°

to 107 times that for the latter.
Investigating polarization of thin porous electrodes
Ksenzhek extended his earlier results8 for the one dimen-
slonal electrode with uniform electrolyte concentration to
the case where electrode thickness is not large compared to
the depth over which significant reaction takes place17.
He defined a measure of porous .electrode efficiency as the
ratio of current drawn at a porous electrode to that which

would pass at a smooth electrode of same superficial area

at the same gross overpotential. The results of this study
were gilven as relations for this efficiency and for elec-
trode current as a function of electrode thickness and
overpotential.

Although these 1nvestigations are somewhat specialized

‘and restricted in application by the assumptions involved,
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Ksenzhek has clarified to a considerable extent the general
nature of porous electrode performance at steady state.

WinsellB: The electrode model developed by Winsel was the

single pore of circular cylindrical configuration in a
material of high conductivity. The electrolyte within the
pore was assumed to have constant conductivity. The author
defined and discussed this model for a general overpotential
relationship at the pore wall, deriving a representation as
a system of integral equations. 1In developing solutions to
these equations, however, Winsel used variables averaged
over the pore cross section, a procedure equivalent to the
assumptlon of a one dimensional model. Cases considered
included electrodes with uniform electrolyte concentration
and redox type overpotential expressions, as previously
treated by Ksenzhek and Stender7, and electrodes with over-
potential relationships which can be represented by an inter-
facial resistance, as developed by Euler and Nonnenmacherlz.
‘Winsel also considered the effect of pre and post-transfer
reactions, although solutions for these cases were not com-
pleted.

The treatments of certaln non-steady state phenomena
were also presented: namely, the application of alternating
current to porous,electrédes and the discharge of an elec-
trode with a uniform (and constant) electrolyte composition
but a condition of the pore wall which varies with time.
These investigations of transient effects can be considered

of a preliminary nature only.
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In his lengthy paper, Winsel presented several new
and interesting approaches to analysis of porous electrode
performance. Computational difficulties repeatedly
limited the effectiveness of the approach.

Newman and Tobiaslgz The one dimensional pore model with a

resistive matrix was analyzed by Newman and Tobias in an
extension of the work of Euler and Nonnenmacherlz. In this
steady state treatment a Tafel type overpotential expression
was utilized instead of the linear relationship used in the
earlier study cited. The model and its inherent assumptions
and limitations were fully discussed and solutions derived,
both for the case of uniform electrolyte concentration and
for the case of binary electrolytes. In addition, approxi-
mate solutions were developed for electrodes in which con
concentration variations occur but where electrolyte conduc-
tivity remains uniform.

This work 1s the clearest exposition avallable of the
nature of the one dimensional model. The principal 1limi-
tation of the steady state analysis presented 1s its restric-
tion to Tafel type overpotential relationships, which lose
validity at any point in the electrode where transfer cur-

rents become small.

1.3 Scope of Investigation

The development and analysis of a one dimensional porous
electrode model which 1s undertaken herein is intended to

unify and extend the results of the previous steady state
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treatments and to provide descriptions of transient behavior
in porous electrode systems.

The one dimensional model here developed, within the
limitations of all one dimensional approximations, is appli-
cable to all flooded porous electrodes in which no forced
convection of electrolyte exists and for which the resis-
tivity of the electrode matrix is negligible. The develop-
ment involves no limitation to electrolytes of uniform, or
constant, concentrations or conductivities. The relation-
ships between transfer current, electrode potential, and
local specles concentrations which are employed in this study
are conslidered reallstic and representative of the current
knowledge in electrode kinetics; no fundamental restriction
is placed upon adoption of any such relationship based upon
a rate 1limliting charge transfer step. However, throughout
this work, as in essentially all previous investigations,
no account is taken of any variation of the properties of
the electrode matrix with extent or rate of electrode
reaction.

The consideration of dynamic behavior in porous.elec-
trodes 1s undertaken in the context of phenomena that occur
over times significant in a charge or discharge cycle
(tenths of a secénd to many hours) and not in the restrictive
(and except for certain measurements, unrealistic) sense of
applled alternating currents of the first few milliseconds
of discharge. Thus the effects of variations in electro-

lyte composition with time are explored.



In comparison with the previous work cited in Section
1.2, this study represents an increase in the generality of
treatment with respect to the nature of electrolyte systems
considered and to the characterization of the electrode
reaction rates. It restricts electrode materials to those
of low resistivity, a limitation not present in certain other
analyses. No previous treatment of the transient phenomena
is known.

The present investigation involves no experimental
verification of the theoretical results. Moreover, currently
no reliable measurements of current distribution in porous
electrodes are available. Thus, in a sense equally appli-
cable to previous treatments, this work must be considered
the analysis of a model only; an analysis which may, however,
approximate the behavior of many real systems to the extent

they can be portrayed by the model.
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2. FORMULATION OF POROUS ELECTRODE MODEL

2.1 Transport Phenomena in Electrolyte Systems

The characterization of the processes occurring in a
flooded porous electrode must be based upon the description
of the transport of mass and charge in the electrolyte
filling the pores of the electrode, and of the kinetics of
the electrode reactions occurring at the pore walls. The
latter phenomena i1s discussed in Section 2.4; it essentially
consists in the specificatlon of an overpotential expression
relating reaction rate (or transfer current) to the condi-
tions prevailing at the locality in question. Transport
effects in electrolyte solutions have been discussed in
considerable detail in many books and articles; perhaps the
work of Levich20 presents as clear a development as any.

The pertinent transport concepts are presented below in
application to the electrolyte in the pores of an electrode.

The electrolyte solution within the pores of the elec-
trode (and that exterior to the electrode) 1s composed of
an undissociated solvent and various dissolved specles,
which may be either charged (ionic) or uncharged. At any
position in this electrolyte the concentrations of the
various species, cy (mols/cms), and the potential, ¢ (volts),
are necessary to describe the solution at that point.

The potential may be specified with respect to any arbitrary
reference; here this reference is taken as the constant

potential of the electrode matrix. In this electrolyte the
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the vector flux, Hj (mol/cmz—sec), of any species, j, is
expressed in terms of the gradlients of concentration and
potential at any point as

Ny = -Dy V ¢y - zjeuycy V ¢ + Vey (2.1-1)

where: DJ diffusion coefficlient of species J (cmz/sec)

zJ = charge number of species J

19

€ = electronic charge (1.60 x 10 ~~ coul)

o
]

3 mobility of species J (cm/sec-dyne)

j<

= vector hydrodynamic velocity (cm/sec)

The three terms on the right-hand side of this equation
represent, respectively, flux components arising in diffu-
sion under a concentration ( more correctly chemical poten-
tial) gradient, migration under a potential gradient, and
convection by bulk fluid movement. The electric current in
the electrolyte, i_(amp/cmz), is carried by the charged

specles and may be related to thelr fluxes.

1=F;ZJN_J | (2.1-2)

where: F = Faraday's constant (96,500 coul/equiv).
The potential at any point in the solution must be

related to the local charge density by Poisson's equation

F
¥é = - E, szcj (2.1-3)

where: €' = permittivity of the electrolyte solution
12 I -
)

(cou4 /erg-cm). However, except 1In the electric double

layer at the surface of an electrode, charge separation is
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not significant in the solution; that is, the local charge
density 1s never appreciable. Therefore, as 1s done in
almost every study of electrolytic transport phenomena,
electroneutrality is assumed. This electroneutrality assump-

tion is expressed as
;zjcj =0 (2.1-4)

and serves to replace the Poisson equation (2.1-3) in the
description of the system. It should be noted that this
assumption 1s not equivalent to replacing the Poisson equa-
tion by the Laplace equation, v2¢ = 0, since the constant,
F/e‘, in equation (2.1-3) has a very large value, on the

order of 1018

volt-cm/coul in units consistent with the
expressions given above.
For conservation of specles J, the continulity relation

can be written

J _ .
36 = -V Ny o+ (2.1-5)

where: t = time (sec)

SJ = specles J source term ( mol/cms-sec).
- This source term represents a production of the species and,
barring homogeneous chemical reactions in the body of the
electrolyte, is zero except at the electrolyte-electrode
Interface where the electrode reaction takes place. Here
the source can be related to the reaction rate, or rather
to the transfer current density, 1S, for the electrode reac-
tion. In transition to a one dimensional model, this source

term represents the pseudo-homogeneous reaction in the one
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dimensional space, which accounts for the electrode reaction
at the interface.

A general reaction may be expressed as

- z
'ngMJ J s - ne” (2.1-6)

stoichiometric coefficient for species J

=
oy
0]
2]
(0]
<
[
i

=
]

j chemical symbol for species J

chemical symbol for 1 mol of electrons.

@
i}

Here the number of Faradays of charge passed per mol of

reaction, n, 1s given by

n=2j Z,vy (2.1-7)

where the summation 1s over the N specles present in the

electrolyte. Then the source for species J is

= - =2 1% (2.1-8)

where a = surface area per unit volume (cmz/cms). In the
absence of significant capacitive effects (see Appendix I)
the transfer current, is, also represents the sink in a
conservation equation for charge

0=-vy - .j;+'si (2.1-9)

where the current source 1s then

8y = - at®. (2.1-10)

Thus the source of any species, J, can also be represented

in terms of the divergence of current in the electrolyte

vy
sJ =5V - 1. (2.1-11)
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Furthermore, the overpotential expression mentioned
earlier as a description of the kinetics of the electrode
reaction can, in general, be represented by a relationship
of the type

s

i® =f (¢,cj,£) . (2.1-12)

If the expressions for component flux, equation (2.1-1),
and those for the source terms, in form (2.1-11), are sub-
stituted into the continuity equatlons (2.1-5) for each
species, then a system of conservation equations, one for

each species, J, 1s derived.

de v
L - V- (Dyvey) + zyev-(uge,ve) + zﬁm3'+~5%~V'1

j=1,...,N (2.1-13)
This system of equations, together with the electroneutrality

condition
Z: z4y = 0, (2.1-4)

serves to describe the transport phenomena taking place in
the electrolyte. With a suitable overpotential expression
vei=- af(¢,cj,£) (2.1-14)

the transport processes occurring in the electrolyte under
isothermal and isobaric conditions are completely

characterized.

2.2  Basic Assumptions for Porous.Electrode Model

The characterization of pgrocesses occurring within the
electrolyte in the pores of a porous electrode (and at the

electrode surface) which has been stated in Section 2.1 is,
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in theory at least, sufficlent for complete solutions for
the dynamic behavior of the system. However, the equations
(2.1-13) which describe transport in the electrolyte are of a
nature such that no analytic solutions are possible and numeri-
cal analysis 1s limpractical for realistic cases. Moreover,
as indicated in Section 1.1, the configuration of the reglons
over which (2.1-13) are to be applied is not subject to any
practicable mathematical description for real porous bodies.
In addition, other data for application of these equations,
notably diffusion coefficlents, DJ’ and mobilitiles, uJ, for
various specles as functions of solution composition and poten-
tial gradient are not avallable. Therefore, certain simplifying
assumptions must be made 1n order to permit analysis of the
system and prediction of electrode behavior. These assumptions
define the model treated in this dissertation within the already
stated general consideration of flooded porous electrodes.

. Three basic assumptions, or limitations of consliderations,
have previously been mentloned. These are:

1. The electrode can be described by a one dimensional
approximation. This requires that all gradients
perpendicular to the overall direction of current
flow (direction of distance into the electrode) be
negligiblé; that the electrode be macroscopically
uniform; and that the charadteristic dimensions of
the pore étrucfure be small compared to distances
over which there is significant variation in concen-
tration or potential. By this assumption the pore

electrolyte can be treated as a one dimensional
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region of electrolyte with a distributed homogeneous
reaction representing the actually heterogeneous
electrode reaction.

There 1s no hydradynamic (bulk) flow of electrolyte
in the pores. Thils assumption requires that no flow
be 1mpressed by an applied pressure gradient and that,
further, any changes 1n electrolyte volume accom-
panying the electrode reaction generate no significant
fluild velocity. It should be noted that if a signi-
ficant flow 1s introduced by exterior means, the
transport of reactant (and product) will be largely
by forced convection, the convection term in equation
(2.1-13) becoming dominant even at extremely low

velocities (order 1074 cm/sec) .

. The matrix 1s isopotential. This condition prevails

for porous bodies of high (metallic) conductivity
and 1s approximately satisfied as long as the solid
phase conductivity is large compared with that
representative of the electrolyte. Many, but
certainly not all, porous electrodes satisfy this

condition.

Further assumptions of a fundamental nature are introduced

at this time. They are:

4.

- Transport parameters, that 1s diffuslon coefficients

and mobilitlies, are constant, independent of concen-
tration, over the ranges of varlables encountered in

the electrode. At the high electrolyte concentrations
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encountered in most important electrolytic cells,

this assumption 1s certainly not satisfied (nor even
approximately satisfied). It is dictated by the lack
of adequate knowledge of the behavior of the properties
of concentrated electrolytes and further by the diffi-
culty in using any complex expressions for the
parameters 1n equations (2.1-13). All known treatments
of porous electrodes, and of other electrolytic trans-
port problems, have been forced to employ the assump-
tions. It certainly can impose a limit upon the

degree to which the model represents an actual electrode.
The electric double layer can be considered as part

of the electrode matrix and 1ts effects accounted for
i1n whatever overpotential relationship is used. Given
an approprlate overpotential expression (see assump-
tion 7) this condition i1s very well satisfied so long
as pore dimensions are large compared to the double

7 cm); that is, so long as

layer thickness (order 10~
the double layer occuples only an insignificant por-
tion of the pore cross section.

The solid phase of the porous electrode (the matrix)
undergoes no significant modification in the course
of the process consldered; that is, 1ts properties

do not change with the amount of current passed nor
with the éondition of the adjacent electrolyte. Such

an assumption is necessary to provide a well defined

model of any generality but must be considered a
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serious limitation. In most batteries, as opposed

to fuel cells, very significant changes in the solid
phase do occur during charging or discharging. No
means of describing this effect 1s known and many
aspects of this phenomena are little understood.

The relationship between local electrode reaction
rate (transfer current) and conditions prevailing

at that locality can be satisfactorily represented

by an overpotential expression of the form (2.1-12).
This requires a reaction whose rate depends only upon
species concentration in the electrolyte and poten-
tial difference between the electrolyte and the
matrix. If assumption 6 is met, then this situation
will ordinarily follow for flooded systems (no gas
present). It 1s further assumed that such over-
potential expression is known.

The effect of transport phenomena in the electrolyte
exterior to the porous electrode can be accounted for
by an equivalent "transfer layer" (diffusion layer)
expressed as a thickness of electrode structure
within which no electrode reaction can occur. This
assumption presupposes known solutions of exterior
"convective-diffusion" problems and their translation
into the terms specified. It imposes no essential
limitation upon the model.

The electrolyte 1s isothermal. This assumption is

truly valid only at low current drains. It allows



avolding the problems of heat transfer, which;are
usually dependent on factors exterior to the elec-
trode 1itselr.

The assumptions enumerated above defline a model for
the porous electrode which willl be developed in detail ih
the next section. Further assumptions will be made, from
time to time, in the course of the analysis, but they will
not be basic to the development of the model. The validity
of the fundamental assumptions as applied to any real elec-
trode will determine the applicability of the results of

this analysis to that electrode.

2.3 Development of One Dimensional Porous Electrode Model

The assumptions of Section 2.2 define an 1dealized
porous electrode which may be regarded as a one dimensional
reglon of electrolyte throughout which a current and speciles
source 1s distributed. The strength of this source at any
point 1s glven by equation (2.1~8). The region, which repre-
sents the electrode, will be described as extending in the
single significant direction, y, from y=0 at the face of
the electrode to y=f em at the plane of symmetry (or sealed
termination of the electrode). The face of the electrode
has another one dimensional region of electrolyte, without

species or current sources, adjoining to it; this represents

the equivalent transfer layer and extends from y=0 to y=-5 cm.

Beyond the transfer layer in the negative y direction is the
completely mixed bulk electrolyte and the counterelectrode,

both exterior to the consideration of this model. The

34
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Figure 2. One-dimensional Porous Electrode Model.
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arrangement just described 1s deplcted in Figure 2.
- For the one dimensional approximation with constant
transport parameters and no hydrodynamic flow (assumptions

1, 2 and 4) equations (2.1-13) become

d 3 v
A L ACE % (2.3-1)

where ¢ is the potential in the solution less the assumed
constant potential of the matrix, 1.e., the electrode poten-

tial. .Similarly, (2.1-14) becomes
oL ,
&= af(¢,cj) . (2.3-2)

From the description of the model in the first para-
graph of this section, the side conditions for equation (2.3-1)
can be formulated. Initlally, before any electrode reaction
has taken place, the bulk electrolyte is unaltered in the
pores; thus the initial condition is:

At t = O: (2.3-3)

cy = cg
where cg is bulk concentration of species J. In the bulk
electrolyte the concentrations remaln unaltered. Thus
the condition exists:

. — O -
At y = -b: cy = oy (2.3-4)

Also, at the face of the electrode, so at the face of the
transfer layer, the current density in the electrolyte must
be the total current denslty applied.

At y = -6 and at yl= O: 1 = 1i* (2.3-5)
where i* = applied current density in pore electrolyte

(amp/cmZ). . At the plane of symmetry (or equivalent
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termination) of the electrode the condition of symmetry must

be met. This 1s expressed as:

de
At ¥y = £: 351-= g%-= 0; 1 =0 . (2.3-6)

Within the accuracy of assumed constant transport
parameters, the Nernst-Einstelin relation can be introduced
(for a discussion of the applicability of this expression

see Harnedzl),

D
Uy = Eros (2.3-7)
where k = Boltzmann constant (1.38 x 10”8 erg/°K)
T = Absolute temperature (°K)

Substituting (2.3-7) in (2.3-1) and noting

F

£ -
kT = RT ’

where R 1s the gas constant,

de dc de 2 v
J - —J F J Fey, J A -
3 = DJ Iy + ZJDJ RT 3% Oy + CJ ayz + nF Oy (2.3-8)
and, applylng the same treatment to equation (2.1-2) for the

current
_ -~ dc o
i = -F ; 24D, St 23%5 &) (2.3-9)

Equations (2.3-2) through (2.3-6) and (2.3-8) now charac-
terize the model. Thus the problem reduces to the analysis
of this mathematical system.

~ The egguation system can now be more convenlently treated
if put in dimensionless form. Moreover, such a transforma-
tion yields groupings of parameters that reduce the number

of independent parameters whose influence may be studied.



A sultable transformation for this model is:

= L
T =3
D, t
o= K~
P
(¢]
c, = 4
J 40
K
__F(s0,)
= "R

where ¢e 1s the equilibrium electrode potential at bulk

electrolyte composition and the component designated k

is a convenient non-reacting species present in large concen-

tration 1n the bulk solution. With this transformation

the following dimensionless parameters appear:

ol o
Ty =D, 3 Y5 = %
k J Cp
*
B = ———l—&-a H A = %
nF Dk Cy

The equation system representing the electrode model then

becomes
d, &g Py v
= S d 4z (c e, 8@) + —Q-B oL
T ot a2 AN P EYJ“FY T oY
j=1,N 2.3-11)
szcJ =0 (2.3-12)
J
%% = = a f(@:cl) = —p(@,CJ) (2"3_13)

where the function, p, representing the overpotential ex-

pression is also cast in a form which involves the

38
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(2.3-10)




39

dimensionless,variables. Equation (2.3~9) is easily re-
arranged, with nondimensionalization, to the form:

{ha I +f§:zjvj g;i} | (2.3-14)

0d _ 1
) zzv o
f,73737d
-

These equations have the side conditions, transformed from
(2.3-3) through (2.3-6):

At T =0: Cy=1y

(2.3-15)
Y = -A: CJ = Yj
Y=0: I=1 ‘ (2.3-16)
ac 30
Y=1: sg-=9¢=20;I=0. (2.3=17)

The conditions on current represented by (2.3-16) and
the right-hand expression of (2.3-17) can be combined in an
alternate form by integrating O0I/0Y over Y = O to 1. Then

the restriction appears as

1 1
:/‘ %% a¥ =\/ﬂ p (9,C,)dY = 1. (2.3-18)
~“O o]

2.4 Overpotential Expressions

The present analysis strives to maintain considerable
generality in the exact nature of the relationship between
local reaction rate and the conditions existing at the point
in question. This must be accomplished subject to the res-
trictions imposed by assumption 7, that the rate may be
expressed in the form

1% = ¢ (0,c (2.4-1)

3)

where transfer current, is, is used as a measure of rate.
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Of course, factors other than those considered in (2.4-1)
may I1nfluence local electrode reaction rates. However, the
current state of knowledge of electrode kinetics for most
reactions is such that no characterization, even under near
l1deal conditions, is well established. That is to say,
even when conditions are such that the influence of factors
such as electrode history. state of aggregation, presence
of traces of catalytic or inhibiting compounds, etc., 1is
absent, usually no unequivocal rate relationship is known.
The mechanisms of most reactions are poorly understood.
Thus the overpotnetial expressions available are, for the
most part, empirical results expressed in forms consistent
with some assumed mechanism.

It should be noted that even if electrode reactions
-were satisfactorily desqribed for local plane surfaces with
known hilstories, application of these descriptions to porous
electrodes might be tenuous due to lnhomogeniety of matrix
materal and changes in materilal properties during the process
of the reaction. Really, the overpotential expression used
must represent the electrode reaction as 1t occurs at a

matrix-electrolyte interface within the porous electrode.

The development of such information 1s a fleld of study re-
quiring considerable emphasis. As stated under the basic
assumptions of this model, a valid expression of type (2.4-1)
will be regarded as known for this investigation.

The analysis that is undertaken in Chapter 3 requires

no further supposition concerning the nature of the rate



expression. However, for application to the calculation
of behavior of specific electrode systems, the function f
must take some definite form. For utilization in example
calculations in this work two forms of overpotential expres-
sions, which are in wide usage, have been selected. One of

these is the Tafel type expression,

c
. - L exp [%— (¢-¢e)] , (2.4-2a)
c

o
r

where 1 = exchange current density (amp/cmz)

a = transfer coefficient (between 0 and 1, usually
about 1/2)
¢e = equllibrium electrode potential at bulk concentration

and where the subscripts r and p refer to reactant and
product, respectively, for the reaction considefed (2.1-6).
The other form is the redox (or Erdey-Gruz or Volmer) type

formula,

1° = 10{% exp [%%E (¢-¢e)J - Eg- exp [S——)-“'l}{TnF (¢—¢e)” (2.4-2b)
r

Both of these‘expressions apply to reactions first order in

reactant. The Tafel form corresponds to an electrode reac-

tion which may proceed in one direction only, or to reactions

at transfer current densities high compared with their ex-

change current density. The redox formulation 1s applicable

to systems considered "reversible". An extensive discussion

of the basis of these and other overpotential expressions,

as well as of electrode kinetics, in general, is given in

22

Vetter While these relationships are certainly subject
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to the difficulties and limitatlions mentioned earlier, it is
felt that they are realistic considering the current state
of knowledge of kinetics for electrode reactions. For most
reactions in flooded electrodes the redox form should be
preferred. These expressilons are much better descriptions
of the vast majority of reactions than any linear approxima-
tions (equivalent resistance)* and correspond to the forms
chosen in the better work previously published (Tafel by

Newman and Tobiaslg, redox - for the special case of uniform

concentration and a=% - by Ksenzhek and Stender7’8 and by

Ksenzhek16’17)

. More accurate relationships should, of

course, be used if available for any system being investigated.
Application of the transformation of Section 2.3

(2.3-9) to the expressions (2.4-1) and (2.4-2) gives, for

the Tafel case

Cr

1% =1 ﬂ exp [an®d] (2.4-3)

and for the redox relationship

C

1% =1 {L exp [and] - £ exp [(a-1) n@]} (2.4-4)
o 7., o

Then converting to the form of equation (2.3-13) and intro-

ducing the dimensionless parameters

*
For comparison purposes only, a linearized form of (2.5-1)

for vanishing transfer current density (and in absence of
concentration overpotential) i1s also used in some calculations.
This is i nF

S 0
17 = g7 (0-0,)

and involves the further assumption of a=0.5. It is com-
parable to expressions used by Euler and Nonnenmacherlz, and
by certain other previous investigators.
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aﬁzio ¢ A
nFchk
oI
the expressions for 7 = -p(®,Ci) become
a1 Cr
Tafel: JF =-X 7 eXD [an®] (2.4-6)
r

C C
Redox: %% ==X {#f exp [an®] - ;ﬁ-exp [(a—l)n@]} (2.4-7)

Although a general overpotential function will be used in
a large part of following developments, the redox type ex-
pression will occasionally be utilized to illustrate the

adaptatlon of the treatment to particular rate relationships.

2.5 Significance of Variables and Parameters

Before proceeding with the analysis of the one dimen-
sional porous electrode model, 1t may be well to examine
the relation of variables and parameters used to describe
the system to quantities normally measured for electrolytic
processes. There are many ways in which the model may be
related to the physically measurable system. The choilce
among these should be on the basis of having exact corres-
pondence between as many varlables of the model and their
measurable counterparts as 1s possible.

In order to relate the model to measured physical quan-
titles, certain characteristics of the porous electrode must
be defined. For this purpose consider the structure shown
in Figure 1 as a series of separate channels or individual
pores as illustrated 1n Figure 3. Then a tortuosity factor,

w, can be defined as the ratio of average path length through
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a pore, £, to matrix thickness, £', and a divergence angle,
6, as the average angle made by the pore axis with the direc-
tion perpendicular to the electrode face. Also the average
fraction of a sectlon of the porous solid, taken parallel
to 1ts face, that is void (i.e., consists of pores) can be
defined as the porosity, P. Then the effective electrolyte
area perpendlcular to the direction of the pore axes is
P cos 6 per unit superficial cross sectional area.

To a gooa approximation, at least within the domain
of cases established by the assumptions of the present model,
the properties of the electrolyte within the pores are iden-
tical to those of bulk electrolyte at similar composition.
That 1s, the presence of the pore walls does not signifi-
cantly affect the transport parameters of the constituents
of the solution as long as the double layer occupiles a
negligible portion of the pore cross section. Accordingly,
the transport of species in the one dimensional model may
be compared to that in an average pore along the path of
the pore. In any such comparison the concentrations in the
model must be referred to electrolyte volume only, in order
to correspond to bulk concentrations at the boundary and at
initial time. Therefore fluxes must be referred to elec-
trolyte cross section area alone. If primed symbols repre-
sent superficial (referred to total frontal area) flows,
i.e., those that would be measured,

N' .
. ;
Ny = Foos ® (2.5-1)

it . - %! R
L =rssel Y v e (2.5-2)



Moreover, the model boundaries must be expressed, in terms
of macroscopic distances &' and £

L =wg ; b =uwhbd . (2.5-3)

-With these adaptations, the bulk transport parameters hold

for the model, and the only effect of the pore structure
appears in the first two transformations of (2.3-9) where

@ £' must replace £, and in the parameter, B, which becomes

B _ i*te ‘61

= 5 (2.5-4)
nF chkP cos 6

in terms of normally measured values.
If the overpotential relationships of Section 2.4 are
to be compared to those measured for elementary plane sur-

faces, the parameter € becomes

a z'zioP cos 6
nF chk

where io is the exchange current determined for the elemen-
tary plane. It must be re-emphasized here, however, that
such comparisons are not to be recommended in view of the
strong influence of surface conditions (and local configura-
tions) oﬂ overpotential properties. Measurements should be
made, as mentlioned earlier, for the matrix concerned.

In the above comparison the applicability of the assump-
tions .of Section 2.2 are, of course, assumed. Without this
condition the model loses significance and no comparisons
of its parameters to reality is possible. However, minor
deviations from certaln of the assumptions may, in some

cases, be compensated for by changes in values of certain



quantities entering the model. Thus the effect of a pore
structure not homogeneous on a small scale, but rather
possessing repeated pore narrowings or restrictions, may

be compensated to some extent by variation of the diffusion
coefficients used. The influence of certain portions of the
pore wall to which transport is unusually difficult may be
balanced by reduction of the speciflic area value, a. Each
such situation requlres special consideration; in many
cases sultable adjudtment may be possible but this 1s not
necessarily to be expected. Nor is it a concern of this
dissertation to examine at length cases not corresponding

to the model developed.

47
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3. ANALYSIS OF POROUS ELECTRODE MODEL

3.1 The Problem of Analysis

The one dimensional model for flooded porous electrodes
developed in Chapter 2 is represented by the system of N
parabolic partial differential equations (2.3-11), for the
N species present in the electrolyte, together with the
restrictions imposed by the electroneutrality condition
(2.3-12) and the side conditions (2.3-15,17,18). Substi-
tuting the given overpotentlal function, p(@,CJ), into the

appropriate equations, the system appears as

o, Fc Pe X v .
-1_B_l=-—l+ z c——?+3—la@>-—isp(®,c ) (3.1-1)
Ty OT 372 I\ 52 Y oY T, i
for J =1, ..., N (note subscript, 1, in fuction p(@,Ci) runs

from 1 to N) with

ZEjZJ cJ =0 (3.1=2)
J
and
CJ' o Gl M
ac
J e =0 (3.1-3)
oY v=1 )4 -1

1
,lf p(¢,ci) dy = 1.

Since the relation (3.1-2) can be used to express any dimen-

sionless concentration, C in terms of the other Cj's,

k’

this system appears as N parabollc equations (3.1-1) with
appropriate side conditions (3.1-3) involving N-1
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concentration variables, CJ’ and the potentlal variable, ®, as
functions of Y and t. In principle at least, solutions can

be derived for this system giving the variation of concen-
trations and potentiai, and thus electrode reaction rate,

with position and time.

Unfortunately, the partial differential equations (3.1-1)
are non-linear, the non-linearities occurring in the second,
and in most cases the third, terms on the right-hand side.

No gnalytic solutions are eossible. Further, the non-
linearities exist in very significant (and frequently dominant)
terms. Thus solutions of approximate, lineafized equations
corresponding to (3.1-1) will not, in most cases, yield
results valid for this model. For solutions to this system

of equations, recourse must be made to numerical techniques.

The application of numerical analysis to the system of
equations of this model encounters several significant diffi-
culties. While the treatment of linear parabolic equations
by finite difference methods 1s a reasonably well developed
field, particularaly when coefficients are time independent
(see Forsythe and Wasowzs, for example), very little has
been established concerning the analysis of non-linear
problems (except for a few very special cases). No methods
of demonstrated convergence and stability which are applicable
to this problem have been described, at least to this inves-

if congideration

tigator's knowledge. 1In -fact, even is

s .
Y Vs v i

limited to the system of ordinary differential equations

representing the model at steady state (equations (3.1-1)
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withgg—i set to zero), proven numerical methods are not
avallable.

This situation has led to an "empirical™ approach to
the numerical analysis problem; that is, methods have been
formulated based upon the principles of finite difference
analysis and upon expected behavior of the solutlons to the
equation system; these methods have been repeatedly modi-
fied (or completely reformulated) in accordance with the

performance of the method applied to the present model.

In this manner the numerical procedure described herein has

been developed. It 1s found to yield solutions for the equa-
tions of the one dimenslonal porous electrode model over

wide ranges of 1input parameters. The convergence of this
procedure cannot be established, nor can its stability,
except for those cases to which 1t has been applied. The
application of this procedure to any other problems (systems
of equations) must be undertaken with considerable caution.
Nevertheless, 1t appears to be a powerful tool 1n predicting
the performance of porous electrodes satisfying the assump-

tions of this work.

3.2 General Numerical Procedure

The general numerical procedure developed 1n this inves-
tigation is outlined here. Details of the method and its
implementation are discussed later. Of course, the procedure
is aetually carried through with high speed digital computing

machinery and is designed with this in mind, but the method



1s not, in principle, restricted to this form of execution.

The partial differentlal equations (3.1-1) are first
put in finite difference fcrm in terms of increments of the
independent variables Y and 7. At each time step (at each
value of T), starting from the initial conduction, the system
is then represented by a set of simultaneous, non-linear,‘
algebraic equations involving values of the variables from
the preceding time step. This equation set is solved by
assuming starting values of all quantities appearing in non-
linear terms and finding revised estimates of these quanti-
tles by solution of the then linearized equation system,
continuing the procedure iteratiéely until convergence is
obtalned. The calculation then proceeds to the succeeding
time step where the same process is undertaken. Solutions
are also obtained (by the same method) for the steady state
problem. When the time step calculations yield results
satisfactorily close to the steady state condition, the
problem 1s terminated.

In using this,méthod, convergence of the iterative
procedure at each time step can only bé attained if the
overpotential expression, p(@,Ci), is put in a form such
that any linear dependence of p(@,Ci) upon the CJ of the
equation concerned (3.1-1) is separated. Thus the expression

becomes

p(@,Ci) = CJAJ(Q,Ci) + BJ(

where the terms AJ and Bj will be different in the different

®,C,) (3.2-1)

equations of (3.1-1). The nature of these terms for the



overpotential types discussed in Sectlon 2.4 is developed
in Appendix II. The reason for this procedure lies in the

magnitude sometimes assumed by coefficients of any C, in

J

p(@,Ci) and in the basic requirements of convergent ltera-

24)

tions in non-linear systems (see Lapidus . It should be

noted that AJ and BJ may. include the variable C, which is

J
then given its value from a preceding iteration in their
evaluation.

It is also convenient to replace one of the conservation

equations (3.1-1) with the differential expression for poten-

tial (2.3-14) in cases where the reactants and products

4

constitute a very small fraction of the current carrying
specles present in the electrolyte. The conservation equa-
tion deleted in this instance is that for the species k.
This procedure must be avoided in cases where ionic species
participating in the reaction constitute the largest part
of current carriers in the electrolyte; under these condi-
tions use of (2.3-14) leads to instability.

Many aspects of the numerical calculations procedure
used were dictated by computational requirements (as com-
puter storage limitations) and economics (computer time

utilization). Variations of the method are, of course,

possible.

3.3 Finite Difference Representation

Transformation to finite difference representation is

made by considering the space variable, Y, divided in incre-

ments, h, and the time variable, T, divided in increments, g,.

1

oY



The space lncrements will be constant (h = constant), but
the time steps are variable (see Section 3.4). Then if
J 1s designated as the index for Y and K the index for T,

the relations

Y(J) = (3 - 1)h - A, (3.3-1)
K

T(K) = }: g (3.3-2)
1=1

exlst, the second reducing, for constant increments, g, of

T to ‘
T(K) = Kg . (3.3-3)

Thus the index J runs from 1 to L, where L is given by

L=3+38 4 (3.3-4)

and has a value, LF, corresponding to Y¥=0 which 1is

IF =3+ 1. (3.3-5)

The index K runs from O to some unspecified upper-limit.

The values of the dependent variables in finite differ-
ence representation are those existing at a point in Y - =
space corresponding to integral values of the indices J
and K. Thus these dependent variables become discrete,
indexed, sets of values

c,(J,K) for C, at Y(J), 7(K)

J J (3.3-6)
® (J,K) for & at Y(J), (K) .

In putting the partial differential equations (3.1-1)
in finite difference form, representations of space deri-

vatives of error order h2 have been chosen. These are

53
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Fu U(J-1,K) - 2U(J,K) + U(J+1,K)

.2
oU = 3 + 0(nh®) (3.3~7)
Sl h
%% IK U(J+1,K)2£ U(J-1.K) , o(n?) . (3.3-8)

For representation of the time derivative the form

ou _ U(J,K+1) - U(J,K)

2
+ 0(g") (3.3~9)
dT J,K+3 g

is used, which, it should be noted, is of order gz only for
a point midway between index K and index K+1. In the abdve
U represents any dependent variable. Naturally other finite
difference forms could have been chosen for the derivatives
(perhaps with smaller error terms), but the same order
should be maintained for the errors of the ng-and %? terms*.
Implicit finite difference representations for the
parabollc equations are necessary to maintain the stability
of the solutlion in proceeding from time step to time step.
In order to obtaln symmetry about the polnt of evaluation of
the time derivative, the Crank-Nicholson symmetric form has
been chosen25. It must be mentioned, however, that there
1s some argument over the necessity, or even desirability,
of such a choice26.

The modified form of the overpotential expression

(3.2-1) is substituted in equation (3.1-1) glving

That is, the form L

h)

U - U(J+1,K?h- U(J.K) o

4 J,K

should not be used with (3.3=7).
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3, &c x: 3¢
St R e Tza«b)_
T ot 372 t 2y (CJ 2 T3 ¥
vP
) (CJAJ(¢,ci) + Bj(¢,Ci)) . (3.3-10)

Then such equations for all species save k (recall that k is
a nonreacting species present in large concentration)
yleld finite difference equations in the Crank-Nicholson

symmetric form

1 [EJ(J,K)—CJ(J,K—IXJ ]_{[?J(J—l,K)—ZCJ(J,K)+CJ(J+1,K)]

T, Z 2

Ty g(K) B
+ 2 gﬂ'é'Ech(J,K) + 2 P(S;K) [?J(J+1’KZ;CJ(J-1’K{]
o 2 oh
L
- .".J [AJ (J,K)CJ(J)K)'*'BJ'(J:K)]
. l{[CJ(J-l,K-l)-zcj(J,K-1)+cj(J+L,K-1)]
2 2

( _ _yfe (a+1,K-1)-C,(T-1,K-1)

- %%—-[AJ(J,K—l)CJ(J,K—l)+BJ(J,K—l)i} (3.3-11)
where: P(J,K) = &(J+1,K) - &(J-1,K)

(3.3-12)
Q(J,K) = &(J-1,K) - 20(J,K) + ©(J+1,K)

If, for simplicity in representation, the terms are defined

(3.3-13)



Fy(7,K) = -4 |1-z, 51115231] Cy(7-1,K-1)

2
+ [?JQ(J,K-I)—TJAJ(J,K—I) + XETKT - 2} CJ(J,K—l)
+ [1+zJ + CJ(J+1,K 1) TJBJ(J,K 1)
then equations (3.3-11) may be expressed as
[1 24— CJ(J 1,K)+ zJQj(J,K) TJAJ(J,K) XETKT' J CJ(J,K)

j(J,K) + TJBJ(J,K) (3.3-14)

which have the limit conditions from (3.1-3)

Cj(l,K) = CJ(J:O) = YJ

4 EﬁzJBL%AElJCJ(J+l,K) = F

(3.3-15)
CJ(L—l,K) = CJ(L+1,K)

In the above equations AJ(J,K) and BJ(J,K) are zero for

J < LF since this represents the region in the equivalent

transfer layer where no reaction can take place. For J = LF,

the values of AJ(LF,K) and BJ(LF,K) calculated from the

overpotential expression must be multiplied by a factor

1 P(LF,K

to account for the absence of specles source on one side of the
position J = LF(see Appendix III). When the expression for

FJ(J,K) (3.3-13) 1is compared to the equation for C, (3.3-14)

J
for one earlier time step, then a recursion relation for

FJ(J,K) becomes apparent,

—_ e = - _ % { woay 2
rj\d,K) = rj\J,K 1) (gj(K) + 5

ey
W
L]
(o

|

—
o

—

2 . e
: c,(J,K-1),
J(K‘l)>' J

which can be used 1n calculating FJ(J,K) at each time step
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except K = 1. The value in the latter case 1is easlly shown

to be '
F,(3,1) = (7, - z n? B (7,0) - —2 (3.3-17)
A A N S IS A S Y .
where x=constant concentration conductivity::E:zgwjyj/nﬁ.
For the species k, equation (3.3-10) can be put in a form

oriented to consideration of ® as the primary dependent variable,

noting species k does not react,

2
Po 1 Cpap 1 0 Ck> 1 9
C (}——-+ o + o ——) = = . (3.3-18)
k\oy2  C & ¥ " T 3 z, OT
Then, if a variable
* = & - @!Y=_A 5 O*(J) = o(J) - @(1) (3.3-19)

is defined, the finite difference approximation for (3.3-18)

can be written in the symmetric form as

Cy (J,K) [@*(J—l,K)aB@*(J,K)+®*(J+1,K)]
5 :

N R(J,K) [ 2*(J+1,K)-0*(J-1,K) + S(J,K)
2h Zh

4

Cy (J,K-1) [@*(J-l,K-l)—2@*(J,K—l)+®*(J+1,K-l)]

2 he
+ R(J K-1) [&*(J+1,K-1)-¢*(J-1,K-1) + S(J,K-1)
2h 2h_ N2
! [Ck(J,K)—Ck(J,K—l)] (5.3-20)
. g(K) T
k
€, (J+1,K)~C (7-1,K)
where: R(J,K) = T (T.K)
k s

(3.3-21)

Ck(J—l,K)—ECk(J,K)+Ck(J+l,K)
C (3,K)

S(J,K) =



Rearrangement and definition of the term

F(3,K) = - [; - R JiK‘l)] o*(J-1,K-1) -20% (J,K-1)
+ [1 + 5111£££%]¢*(J+1,K-1) + SI.K-1)
K
R ¢, (J,K-1) (3.3-22)
Kz, (kI .

gives the finlte difference expression for ®*(J,K)

[1 - B-(245-2-]c1>*(J-1,K)-2@1>++(J,1<)+ [1 + Bﬁ%iﬁi]Q*(J+1,K)

4

Fp (9,K) s(JQK)+ 2

- C (T.K) T 2, A (K) 2,

(3.3-23)

which has the 1limit conditions, from (3.1-3) and from defini-
tion of &*(J,K),
o*(1,K) =0
(3.3-24)
&* (L-1,K) = ¢o*(I+1,K).
As with the expressions for FJ(J,K), a recursion relation
exists for (3.3-22). This is

2 1 1
Fp(7aK) = - Fp(9,K-1) - Zy <#k(K) T ”k(K"17>Ck(J’K-%;.3-25)

and it holds, of course, for time steps excluding K=1. For
K=1 the value of Fp(J,l) is

G 1

Bk(J,O) - Eﬁ?@]ﬁff (3.3-26)

If equation (2.3-14) is to be used, instead of the con-

P#l.’J'

Fp(J,l) = -

servation relation (3.3-10) for species k, in determining
®* values as discussed in Section 3.2, then (2.3-14) is put

*
in the finite difference form

*
Since no second derivative terms appear 1n this equation,

the fihitg@difference representation of error order h can be
used for ¥ in (3.3-27) and has been found a convenient choice
in this oY application.
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[@*(J,K) i*(J -1, K)] (JlK) [%BI<J’K) LW g,K ]
O*(J,K) = o*(J-1 K) ' VT?'KT nBhI(J,K) + W(J,K{] (3.3-27)

where: E: Z 4Ty J ,K)
(3.3-28)

W(J,K) = ;:ZJWJ[CJ(J,K) - CJ(J-l,K)]
J

and where I(J,K) is given by numeric integration of g% from

LF to J. Using the notation Section 2.3 (i.e., (2.3-13))

I(J,K) _.Jf ( (J K) ¢, (J K)> . (3.3-29)
NUMERIC

Equation (3.3-27) has the boundary conditions given by
(3.3-24). It can be solved for given values of CJ(J,K) by
evaluating W(J,K) and proceeding stepwise from &*(1,K) = O.

The conversion of the values of ®*(J,K) of the system
of (3.3-23) to values of ®(J,K) requires a knowledge of
®(1,K). This value is determined from the last condition of

(3.1-3) by considering the integral as numerically evaluated,

thus becoming

JQF (é* J,K),®(1,K),C, (J K)> (3.3-30)
(NUMERIC)

Although this expression may not be explicit in ®(1,K), this
quantity can be found by application of a suiltable root-
seeking procedure such as the Newton-Raphson method (see

Lapidu324).

The finite difference expressions given in the previous

paragraphs of this section are for use at all time steps



except the initial condition, t=0(K=0). Here the values of Cj
are specified in (3.1-3). Thus solutions are only required
for ®(J,0). For this purpose equation (2.3 -14) can again be
used, becoming under the conditions of CJ = Yj which exisﬁ

at 1=0

Jo L)
= - nﬁZZJTTJYJ = ~ K 3 (3 3—31)

}: 23733

where x 1s used (as previously defined) to represent B .

Taking the derivative with respect to Y of (3.3-29)

Fo_ _1a
f & X

Thls expression can be put in finite difference. form and

= = p(®,C (3.3-32)

;)

BK(J,O) used as equivalent to p(@(J,O),vi), giving

)

®*(J-1,0) - 20%(J,0) + ®*(J+1,0) = = B,_(J,0), (3.3-33)
X

i (
which has 1limit conditions analogous to (3.3-24)

®*(1,0) = 0

(3.3-34)

&*(L-1,0) = &* (I+1,0)
®(1,0), and thus ®(J,0), are then found by a procdure essen-
tially identical with that given for determining ®(1,K) in
(3.3-30).

The sfeady state condition of the system is represented
by (3.1-1) with the left-hand sides set equal to zero. Finite
difference representation for this state can be expressed in
the form of equations (3.3-14) and (3.3-23) with their appro-
priate 1imit conditions by the simple process of setting the

P
is, 1f K=S signifies the steady state condition,

- 1
quantltles,Fj(J,K), F_(J,K), and XETKT-equal to zero. That
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F,(3,8) = F (3,3) = X}%§T - 0. (3.3-35)

Then a solution of the equation system at steady state 1is the
same as a solution at any time step, but with the special
values of the quantities given in (3.3-35) being employed.
These finite difference representations of the porous
electrode, equations (3.3-14) and (3.3-23) for a time step,
K, (or for K equal zero or S) constitute a large and complex
system of simultaneous, non-linear, algebraic equations, the
solutions to which will predict the behavior of the porous

electrode model,

3.4 Conduct of Calculation Procedures

The finite difference representation of the one dimen-
sional porous electrode model, developed in the previous
section, has created in essence a separate problem for each
value of T considered; a problem which is linked, however,
to the solutions of the problems for previous time steps.

Each of these problems consists of a set of simultaneous alge-
braic equations (3.3-14) and (3.3-23), which are reproduced
again here, in condensed form.

£5(3,K)C4(3-1,K) + Ny(3,K)C;(3,K) + £4(3,K)Cy(T+1,K)

= F,(J,K) + Q,(J,K) (3.4-1)

J J
L(J,K)o*(J-1,K) - 20*(J,K) + v(J,K)d*(J+1,K)

F_(J,K)

= 07K + A(J,K) (3.4-2)



62

where: £(J,K) =1 - zJEi%iEl

| _ 2
n(J,K) = sz(J,K) - TJAJ(J,K) - XETKT'— 2

E(I,K) = 1 + ZJEL%LEL

Q(J,K) = TJBJ(J,K) (3.4-3)
w(3,6) =1 - BLEK)
v(I,K) = 1+ BLEK)
| S(J,K 2
A(T,K) = - (Zk L, TR

Since AJ(J,K), BJ(J,K), P(J,K), and Q(J,K) are functions of
®(J,K), then QJ(J,K), ﬂJ(J,K), CJ(J,K), and QJ(J,K) are
likewise explicitly dependent on ®(J,K). Similarly, the
dependence of R(J,K) and S(J,K) upon the CJ(J,K) causes

w(J,K), v(J,K), and A(J,K) to be functions of C,(J,K). At

5
any time stele, FJ(J,K) and Fp(J,K) are known from preceding
time steps, or, in the steady state case, are specified by
relation (3.3-33). The above expressions are valid for

J =2, ..., L -1, with 1imit conditions holding for J = 1
and J = L. Equation (3.4-2) may be replaced by a form of
(3.3-27).

Taken with the appropriate side conditions as specified
in Section 3.3, there are L of the equations (3.4-1) for each
of the N-1 species, j # k, and L of the equations (3.4-2) for
®* (or with condition (3.3-30), for ®). At any K there are

L values of CJ(J,K) (J=1, ...,L) for each j # k and L values

of ®*(J,K) (or ©(J,K)) to be determined. Thus the system can
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be represented by a set of matrix relations: (3.4-4) and
(3.4-5) as shown on the following page. The alternate &%
equation (3.3-27) does not require matrix calculations. If it
were not for the nonlinearities involvéd, that is if the terms
ij, ﬂj, Cj’ QJ, Ly, v, and A were known in (3;4-4) and (3.3-5),
these matrix equations could be resolved to give values for
all CJ(J,K) and ¢*(J,K). However, in the actual case it 1is
necessary to use estimates of CJ(J,K) and ¢(J,K) to evaluate
the matrix coefficients and right-hand vector, and then to
develop new values of the varlables by solution of the approxi-
mated, linearized, system. These new values can then be used
to re-evaluate the matrix coefficients in an iterative pro-
cedure.

The iteration scheme followed must be quite carefully
selected if successive values of CJ(J,K) and ®(J,K) deter-
mined in the course of iteration are to approach the solu-
tion to the non-linear equation system. It has been deter-
mined that solution of the entire system (3.4-4)-{(3.4-5) for
each set of iterates CJ(J,K), ®(J,K) does not, except in un-
usual cases, lead to conﬁergence. Moreover, it 1s the con-
vergence of this iteration that has dictated the form adopted
for the source term in Section 3.2 (3.2-1). Convergence is
most easily achieved if starting estimates are close to
actual‘solutions, thus every effort must be made to secure
good starting values. A basic iteration procedure, as out-
lined in the next paragraph, has been developed which converges

in most cases to the solutions for the system (3.4-4), (3.4-5)
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with reasonable rapidity. Certaln computational cases require
variations of this procedure, which will be discussed later.
The basic iterative process for the solution of the non-
linear finite difference equation system representing the
porous electrode at time step K (or at éteady state) is as
follows:
1. At time step K select initial estimates of &(J,K)
for all J. These are based upon the results of the
last time step (K-1) or upon solutions of similar
problems 1n the case of steady state.
2. Using estimates of &(J,K) ffom (1) or values from
a previous iteration, evaluate the terms QJ(J,K),
ﬂJ(J,K) and CJ(J,K) for the expression of type (3.4-4)

pertalning to the principal reactant and product

specles for reaction (2.1-6). Then using these

values solve the matrix relations for CP(J,K) and

Cp(J,K) (r and p representing reactant and product)

simultaneously. Since the matrices'concerned are in

tridiagonal form, this solution (and other such solu-

tions in thié procedure) are convenlently accomp-

lished by a modification of the method attributed to

Thomas by Bruce et. a1.27.

3. Repeat step (2) for any other reactants or products
not appearing in the overpotential expression.

4. Repeat step (2) for other species J # k present.

5. Using the values of CJ(J,K) determined in (2) through

(5) above for J # k, calculate values of C,_(J,K)

i (
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for J =2, ..., L by means of the electroneutrality
condition, expressed’in terms of finite difference

variables as

(7,K) = =Y z.c,(J,K) (3.4-6)
k J7J
ZKJ;C

Evaluate the matrix coefficients and right-hand

o

vector of (3.4-5) in terms of the approximations to
Ck(J,K) found in step (5). Then solve the tridiagonal
matrix equation for ¢*(J,K) for J=2, ..., L. Alter-
nately, for cases previously mentioned, evaluate
V(J,K) aﬁd W(J,K) and solve (3.3-27) sequentially for
®*(J,K), from J=2 to J=L.

Integrate the overpotential relation, p(®*(J,K),
¢(1,K), ¢;(J,K)), numerically over the interval

J=LF, ..., L to find ®(1,K) as described by (3.3-30).
Determine the new approximations (iterates) &(J,K) =
&*(J,K) + ®(1,K) for J=1, L.

Compare the ®(J,K) generated in step (7) with the
value from the previous iteration (value used at

step (2)). When the values are the same the process
has converged. The comparison is most sensitive 1if,
instead of the &(J,K) valﬁes themselves, p(®(J,K),
C,(J,K)) evaluated with ®(J,K) and CJ(J,K) from
present iteration i1s compared with this function
evaluated at the end of the previous iteration. The
criterion for convergence 1s that the change in p{J,K)

values shall be less than some preset quantity,
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epsilon, for all J=LF, ..., L. If this convergence
criterion i1s not satisfied, go to step (2) and
commence a new lteration. If it is satisfied, record
the values of CJ(J,K), ®(J,K) for 1=71(K) and proceed
to time step K+1.

The calculational sequence described above yields solu-
tions after a reasonable number of iterations to the "problem"
of a single time step, for most values of parameters involved.
Excluded, of course, are cholces of the parameters which
would lead to functions p(J,K) which approach a Dirac delta
function at Y=0 (delta functions are not conveniently des-
cribed or treated numerically). Certain cases (or certain
time steps of some cases) do present difficulties which require
variations in the basic procedure just described. These
difficulties can be attributed either to oscillation from
iteration to iteration or to a "creeping" approach to conver-
gence.

The phenomenon of oscillation arises most strongly in
cases where the principal current carrying species»in the
electrolyte (species with large concentration and diffusion
coefficlents) exhibit large gradients of concentration (CJ(J,K)
a strong function of J for J a principal current carrying
species). It is accentuated by inaccurate starting estimates.
Oscillation manifests itself as a periodic (with the course
of the iteration procedure) variation in the approximations to

c,(J,K) and ®(J,K), either of relatively constant or increasing

J \
amplitude. Oscillations of rapidly decreasing amplitude may
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be ignored. The oscillation period is most commonly two
iterations but may be more. This behavior precludes conver-
gence of the basic iteration procedure. It is treated by
the introduction of iteration to iteration damping on the
variable ®(J,K) whenever oscillatory behavior appears, and
by using two iteration running average values of certain
source terms. Damping is imposed by using a weighted average
of the values of ®(J,K) from the most recent and immediately
previous iterations, in place of that from the most recent
iteration alone, as the quantity used in evaluating coeffi-
clents, etc., in step (2). The welghting factor on the most
recent ®(J,K) value is started (when damping is introduced)
at 0.9 and is decreased each iteration‘by a factor of 0.9
as long as oscillation persists. When oscillations terminate
damping 1s decreased by multiplying the factor by 1/0.9
each iteration until the factor is unity or oscillations again
appear. Any initial degree of damping may be selected.
Note that the convergence criterion must be tightened by
dividing the quantity epsilon by the weighting factor described
above whenever damping is imposed. This simple damping pro-
cedure effectively eliminates oscillation difficulties in
almost all cases, though sometimes at the expense of large
(»50) iteration counts. Improvement of starting estimates
of ®(J,K) helps alleviate the oscillation phenomenon.

H In cases where é redox type overpotential expression
(see. Section 2.4), or a relationship of similar properties, may

exhibit large forward and reverse rate terms and a net reaction



rate very small by comparison, the phenomenon of "creeping"
convergence may arise. 1In this behavior the changes in
®(J,K) approximations from iteration to iteration become pro-
gressively smaller as convergence is approached, in the end
creating a situation where it 1s impossible to ascertain when
convergence has, in fact, occurred. In order to overcome
this difficulty, a significant modification of the basic
calculational procedure is instituted. 1In concept, the modi-
flcation consists in substituting a condition of fixed applied
gross overpotential,
®(1,K) = E (3.4-7)

for that of fixed applied current (3.3-30). Step (6) of the
iteration procedure then solves for ®(J,K), instead of
&*(J,K), and step (7) is omitted. When convergence for a
value of E is obtailned the inlet current, I(1,K), 1s calcu-
lated from

I(1,K) =fL P(¢(J,K), ¢, (J,K)) (3.4-8)

NUMﬁgic

and compared with unity. A new value of E is then chosen to
reduce the discrepancy between I(1,K) and 1 and the procedure
repeated. Successive values of E are used until I(1,K)
approaches satisfactorily close to the desired fixed condition,
I(1,K)=1. While this procedure has been found to effectively
lmprove "creeping" convergence, it must be used judlciously
as 1t Iimposes a requirement of several convergent iteration
processes, and thus many 1lterations, per time step.

The calculational process described in this section
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develops values for CJ(J,K) and ®(J,K) for J=2, ..., L from
given conditions at K-1. As stated in the first paragraph,
this calculation can be considered entirely separate from

overall transient problem and will be referenced in further

consideration of the transient system analysis.

3.5 Time Step Procedure

The progression from the solutions for Cj(J,K—l),
®(J,K-1), determined by the methods of Section 3.4 for any
time step, K-1, to the specification of the equation system,
- (3.4-4)-(3.4-5), for the next succeeding time step, K,
constitutes what may be termed the time step procedure.
This consists in first establishing the magnitude of the step,
g(K), to be used, and then evaluating the terms, FJ(J,K) and
Fp(J,K) by the appropriate recursion relations, (3.3-16) and
(3.3-25). Once the first of these tasks is accomplished,
the second is merely a straightforward substitution using
CJ(J,K—l) and ®(J,K-1) values.

The choice of a time increment, g(K), for time step K

must be based upon the rate of variation of CJ(J,K) and

®(J,K) with K at this step. Although the Crank-Nicholson

symmetric finite difference form utilized in the calculations
is apparently stable, given convergent solutions to iteration
procedures at each time step, the cumuiative effect of errors
made at time steps is of oraer h—lg—l. Thus, choosing g(K)
excessively small generates large cumulative deviatiohs in

the solution to the finite difference procedure, as well as

being prohibitively costly in computation effort. On the
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other hand, if an overly large value of g(K) 1is used, the
error 1n the finite difference representation of the time
derivatives may become unacceptable.* Although the value

g(K) used should, strictly speaking, be based on the

behavior of higher order derivatives of the concentrations,
CJ’ with respect to 7, such a method is impractical because of
lack of knowledge of these derivatives. However, the choice
cannot be avoided by selection of a constant value of g

which 1s small enough for the situation at any time step

due to the error propagation effect mentioned above. The
procedure adopted is based upon the behavior of the terms
FJ(J,K) in (3.4-1) or (3.4-4); it generates small values of
g(K) under conditions where CJ(J,K) is changing rapidly and
i1ts higher derlvatives can be expected to be significant.

The use of varying time steps should not adversely affect the
convergence of the calculations, as shown by Douglas and Gallie
for systematically varied time stepszs.

By examination of the system (3.3-11) in its explicit
form and the recursion relation (3.3-16), FJ(J,K) can be re-
lated to the finite difference approximation for the T
derivative of CJ(J,K-l), evaluated ét t=T(K-1) by the expres-
sion 2

Fy(3,K) = - T [c,(3.k-1)], - X;%KT Cy(3,k-1)  (3.5-1)

*
For the symmetric form this error can be estimated, for

1/

an arbiltrary function U(T) by considering the realtion

2
U _ U(k) - U(K-1) _ g 1
oT|K-2 ~ g Z) 6ty Y (¢)
where £ is some value of T between those corresponding to the
indices K-1 and K. If U'''(T) is large in the neighborhood of
1=7(K), the g must be small.




where [C,(J,K-1)]_ signifies the finite difference representa-

J

tion of the T derivative of CJ at K-1. From (3.3-14) at

T=T(K) the additional expression can be written

T

2

J
Recalling A, (K) = mg(K)/m°, (3.5-1) and (3.5-2) become

a2t

(e, (3,K)1, - XE%KT C;(3.K) = Fy(3,K) . (3.5-2)

-
2

E%-FJ(J,K) = -[04(3,K-1)], - Fogy €4 (3,K-1) (3.5-3)

g%-FJ(J,K) = +[c, (3,01, - E%KT Cy(3,K) (3.5-4)

Since g(K) and CJ(J,K) are always >0, if [CJ(J,K)]T <0, then
from (3.5-4) FJ(J,K) <0. But then from (3.5-3)

E%KT-CJ(J,K—I) > -[cy(3,K-1)1, . (3.5-5)
Conversely, if [CJ(J,K—l)]T >0, from (3.5-3) FJ(J,K) <0,
and from (3.5-4)

E%KT Cy(7,K) > [04(3,K) 1, (3.5-6)

Thus for either case, the requirement is placed, if CJ(J,K)

is to be >0, that
2 CJ(J,K—l)

e(K) < eI, (5.5-7)

This can be satisfied by the approximation

min 5 CJ(J,K—l) C,(J,K-1)

e(®) = 517,142 \! * E&D) [FJ.(J,K—l) F}LWTT
(3.5-8)
without evaluating [CJ(J,K—I)]T. It should be noted that this
treatment employs g(K) values which will usually be too large

to give a difference equation of the positive type (see
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Forsythe and Wasowzg); this 1s not a restriction in the use-

fulness of the computational procedure, nor an adverse
influence upon the stabllity of the process.

If the conservative value of g(K) calculated according
to (3.5-8) 1s used for cases where CJ(J,K-l) get very small
for some J, then the time steps may become impossibly small
for practical computation. In these cases, that is for
sltuations where some CJ(J,K-l) are less than a set minimum
limit, the limitation imposed by (3.5-7) may be avoided by

using an extrapolated (toward steady state) value of

FJ(J,K). This is accomplished by noting, from (3.3-14) and
(3.3-35), that as steady state 1s approached
2
F > - J 3.5-9
4(3.K) el CRD (3.5-9)

or in context of the recursion relation (3.3-16)

2 2
FJ(J,K) = -FJ(J,K—l) - <33(K) + xJ(K-17> CJ(J,K—l)

2
3

If 1t is now assumed that extrapolation can be made in the

c,(J,K-1) . (3.5-10)

Y

T (K) Y

form
CJ(J,K) = CJ(J,K-l) exp [w(J,K) g(K)] (3.5-11)

where w(J,K) is a coefficient which may be formed from

[CJ (J,K'.l) ]T

w(J,K) = ;TR

Ii FJ(J,K-I)

. |
e |Gy TK-I) + AR-IT( (5.5-12)
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then the extrapolation of C,(J,K) is

J
F,(J,K-1) 5
CJ(J,K) = CJ(J,K-l) exp ( CJ(J,K—l) + xJ(K;1)> XJ(K)} (3.5-13)
which leads to the extrapolation for FJ(J,K) of
ZCJ(J,K-I) FJ(J,K—l) 5
Fy(9.K) = = ——gy— exp 1y (K) (cJ(J,K-l) * xJ(K—n)

(3.5-14)

Although this extrapolation prbcedure could lead to quite
erroneous values for FJ(J,K) if applied too far from steady
state, 1t has no appreciable adverse influence on the course -
of the calculation because it is only used when CJ(J,K—l),
and thus FJ(J,K), are very small. This statement concerning
the application of thls procedure has been confirmed by com-
parison of calculations conducted with and without its im-
plementation; in any event, the extrapolation is rarely
required.

The time steps determined as outlined above are also
subjected to an arbitrary upper bound in magnitude. This is
established in order to give a sufficient number of data
points in T for evaluating system performance. Once the time
step magnitude, g(K), is determined, the formulation of fhe
equation system as 1n the previous section i1s easily accom-
plished by means of the recursion relations for FJ(J,K) and
Fp(J,K) as mentioned at the start of this sectiqn. If the
alternate calculation of ®*(J,K) is utilized (3.3-27),Fp(J,K)
need not be evaluated.

The conduct of the transient solution proceeds as a
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serles of individual time step solutions, conducted as out-
lined in Section 3.4, each leading, through the procedures
described in this section, to the definition of the "problem"
for the next time step. The sequence of operations continues
until the values of CJ(J,K) and ®(J,K) for some time step
approach satisfactorily close to the values of these variables
under steady state conditions. These latter values are
determined prior to initiation of the transient computations
by an lteratlive procedure on equations (3.4-4) and (3.4-5),
exactly as for any time step, with the zero values of FJ(J,S),
Fp(J,S), and X;%§7-as imposed in (3.3-35). This approach to
a previously determined condition also provides a confirma-

tion on the stability of the time step procedure 1in each._case

treated.

3.6 Computer Implementation of Calculations

The execution of the calculational procedure presented
in the preceding sections of this chapter requires extremely
large numbers of arithmetic operations. A single iteration
described in Section 3.4 requires on the order of 20,000
manipulations*, and from 10 to 200 iterations may be required
at each time step. Thus the technique developed in this in-
vestigation 1s practicable only when implemented by high
speed digital computation machinery. This has been carried

¥* ¥
out with an IBM 7090 Data Processing System

Additions and multiplications, not including logical deci-
sions, based on a system with 4 speciles present in the elec-
trolyte and using a value of h=0.01.

* Computer Center, University of California, Berkeley.



The calculations were adapted for the digital computer
through a FORTRAN II* program. This program closely follows
the sequence of operations described in Sections 3.4 and 3.5,
with necessary formalization of logical decisions; it is
described and listed in Appendix IV. The program 1s appli-
cable to systems of five or fewer species present in the
electrolyte. About 5 to 20 minutes are required for calcula-
tion of each case treated.

For each case (porous electrode system and operating
condition) to be analyzed, the input parameters required for
the machine computation are:

N : Number of species present in electrolyte (N<5)

zy : Charge numbers of each species (j=1,N)

Vj : Stoichiometric coefficients of each species for
electrode reaction (J=1,N)

WJ : Diffusion coefficient ratios (j=1,N-1)

a,£,N: Overpotential parameters (as required by what-
ever overpotentlal expression is being utilized).

7 : Bulk concentration ratios (J=1,N-1)

Dimensionless current drain

A ¢ Dimensionless equivalent transfer layer thickness
h ¢ Distance increment
g, : Initial time Iincrement

€1:€5" Convergence criteria for calculations at a time
step and for agproach to steady state,
respectively.

IBM algorithmic programming language.

The convergence condition is p(J, K) - p*(J,K)se for all J
where p(J,K) stands for A Cj( K) + Bj (J K), the transfer
current density, and p*(J, & is, for el the value of p(J,K) at
the last iteration, and for €s, the value of p(J K) at steady
state.

* %
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C Minimum concentration level considered significant

ins’ (different from zero) for output purposes

In addition, control indicators as explained in Appendix IV
are required as I1nput information. These designate program
options to be used in regard to auxilliary output material,
conditlions for terminating unsuccessful calculations, and

so forth. All input information for each case 1s in punched
card form. The overpotential expression to be utilized is
entered as a subroutine with the parameters a, £, N (or

any one or two of these).

The program output 1s in the form of line-printed data
sheets, with optional magnetic tape output record for further
processing. The primary printed output consist in a listing,
at each time step and at steady state, of the values of
dI/dY, &, and the CJ for selected values of Y (usually every
0.02 for -A <Y < 1).

The specification of type of overpotential expression
by c¢hoice of a program subroutine, as mentioned above, lends
condlderable flexibility to the computation procedure. A
subroutine covering Tafel and redox type expressions only is
listed in the appendlx, but others can be devised, subject
to the restrictions of three parameters and adaptability to

%
required form of Section 3.2

The form, setting - a§ = p(J, K) = A (J,K) 4(J K) + By (J,K)
uuco not imply linearity as AJ\U,F “rd \u,Ks may ;nvo¢ve

(J,K) evaluated at last iteration. Ea c% form poses indi-
vidual convergence problems.
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Thls mechanlzed computation procedure provides a quite
rapid method of analyzing the behavior, under steady state
and transient conditions, of any porous electrode system
which can be represented by the one dimensional model of

this dissertaion.



4. APPLICATION TO ELECTRODE SYSTEMS

4.1 Characterization of Electrode Systems

The analysis of a particular electrode system requires
that the system, and its condition of operation, be described
in terms of the input parameters of the computer implemented
numerical procedure. These parameters are described in
Sectién 3.6.

The system itself, including the electrode reaction, is
characterized by the number of species present in the elec-
trolyte; the charge numbers, stolchiometric coefficients,
and diffusion coefficients of each species; and by the over-
potential expression for reaction at an element of interface.
In terms of the input parameters, this description involves
N, zj, vj, vj, and the overpotentlal parameters (a, £, TN as
required).

The condition of operation of the system is determined
by specification of the concentrations of species 1in the
bulk electrolyte, the equivalent transfer layer thickness,
and the superficial current density assoclated with the
electrode current drain. These condlitions are represented
through values of the parameters YJ’ A, and B. The effect
of varlation of operation on electrode performance is inves-
tigated by determining behavior of the model at several
values of these operating parémeters, distributed over the

range of interest.

Application of this model to any real electrode requires,
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then, an accurate set of data descriptive of the electrode
reaction at an element of interface and of the transport
phenomena for the species present in the electrolyte. For

most systems of interest such data are not available. In

fact, the almost complete lack of data concerning the varia-
tion of ionic transport parameters with electrolyte composition
léads directly to the necessity of some assumption for this
behavior. The simplest assumption, that of constancy, was
adopted here (see Section 2.2). The absence of reliable over-
potential expressions for most systems has been discussed in
Section 2.4, together wlth the types of expression selected

for use in this analysis. These difficulties in finding

- accurate descriptive parameters for systems to be analyzed
have, to a significant extent, dictated the degree of approxi-
mation used in thils treatment. However, in many cases of porous
electrode systems so little i1s known as to basic behavior of
the electrode reactions that no analysis of any type can be
undertaken at the present time.

In this investigation two electrode systems have been
selected for analysis, both to illustrate the application of
the method and to develop description of electrode behavior
reasonably typical of many porous electrodes. One of these
systems 1s the metal-insoluble oxide electrode in basic
solution, typified by a slightly idealized cadmium anode of
a nickel-cadmium cell. The other was the ferricyanide-ferro-
cyanide redox electrode (cathode) in 2N sodium hydroxide

solution. These selections were based upon a desire to
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examine systems of quite different natures but of considerable
practical interest. The cadmium electrode représents an
anodic reaction occurring in a binary electrolyte and yielding
an insoluble product; it 1s of importance due to the wide
utilization of nickel-cadmium batteries, and other cells

using similar metal-metal oxide couples. The ferri-ferro-
cyanlide system represents, on the other hand, a reaction
occurring in the presence of excess inert electrolyte (the
NaOH) and having both reactant and product as specles present
in the electrolyte; it is .a system that is Well adapted to
experimental investigation of transient porous electrode
performance. Through these two examples, the salient features
of the dynamic behavier of a wide range of porous electrode

systems may be demonstrated.

4.2 Analysis of Idealized Cadmium Anode

The cadmium anode in‘basic solution, treated in slightly
idealized form to permit arbitrary cholces among conflilcting
data and characterizations, is representative of a consider-
able number of metal-metal oxide porous electrodes finding
wide commercial application (e.g., Ag-AgO). The electrode
is typically composed of a porous metal matrix operating in
20-30% KOH. Here 5N (23%) KOH is used. Temperatures of
operation are usually ambient, 25°C being selected for this
example. It should be noted that the anodic operation con-
sidered corresponds to the discharge of a nickel-cadmium cell.

The discharge reaction for a nickel-cadmium cell in



KOH has been described by Kornfeil as:30

Cd + Ox + 0.84 H,0 ———>—Cd(OH)2 + Red + 0.067 KOH (4.2-1)

where Ox and Red represent, respectively, the oxidized and
reduced forms of the active specles of the nickel oxide plate.
There 1s considerable disagreement about these nickel oxide
forms, but this is of no concern in the ahalysis\of the
cadmium anode. In any event, reaction (4.2-1) shows that
there 1is not a significant change in the bulk concentration
of KOH during discharge. At the cadmium anode, the half

cell reaction is

Cd + 20H - Cd (OH)2 — 2e . (4.2-2)

For this system the electrolyte 1s binary, the signifi-
cant specles present being OH and K+ which are given the
indices 1 and 2, respectively. Then, with the 5N bulk KOH
concentration:

z, = -1 25 = +1
vy =42 Vo = 0 (4.2-3)

o -3 3
cq co = 5 x 10 gmol/cm

The diffusion coefficlents in concentrated KOH are not
well known, and of course not independent of concentration.
For this analysis, ionic self-diffusion coefficients at 5N
concentration were estimated, and these estimates used as
the basls for assumed constant values of the model. The

[2 3, "
=

values from Harned and Owen31, converted to dilute solution

diffusion coefficients by the Nernst-Einstein relation (2.3-7).
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These values were, in turn, used to derive diffusion coeffi-
cients at 5N concentratlon by means of the expressions

developed by Gor*don:52 and the procedure outlined by Reid and

33

Sherwood The actlvity coefficients required for this

estimation were taken from Harned and Owen34. Theestimates

developed in this manner are Dy = 4.7 x 107° cmz/sec;

5

D, = 1.8 x 10~ cmz/sec. Due to uncertainty in these values,

2
the diffusion coefficlent-Faraday products used for this

example were taken as the round number approximations:

DlF 4 cm2 coul /gmol sec
(4.2-4)

2
D2F 2 cm coul/gmol sec

For the electrode kinetics of this anode, no reliable
data are availlable. Vetter35 glves a transfer coefflclent
of 0.55 for Cd oxidation in KZSO4, indicating the assumption
of a = % is not unreasonable. However, exchange current
density estimates by battery manufacturers range over several
orders of magnitude, even at a fixed KOH concentration.
Thus it is desirable to use several values of thls parameter
and note the effect of its variation on electrode behavior.
For the analysis the overpotential is characterized by

a = 0.5

. 1073,

-2 2

, and 1071 amp /cm

i

i 10 (4.2-5)

The structure of the electrode also enters the calcula-
tion, both through the specific surface term in the parameter
£ and in the relation of superficial current densities to

those in the pores. Based upon data furnished by U. B. Thomas
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of Bell Telephone Laboratories*, this structure may have a
porosity of 40 to 80% and a characteristic pore dimension of
perhaps 2u. Plate thicknesses range from 0.06 cm to 0.35 cm,
and specific matrix surface area is approximately % mz/cms.
For the cadmium electrode of this study, the following values

are adopted.

L

i

0.1 cm

a = 104 cmz/cm

(4.2-6)

3 based on pore vplume

A porosity of 50% is assumed.

Equivalent transfer layer thickness 1s dependent upon
conditlons exterior to the electrode and may vary widely.
For thils reason it was decided to study the effect of its
varlation, using values for the cadmium anode of

& = 0, 0.01 ecm, and 0.05 cm . (4.2-7)

Since possible operating conditions of a cadmium anode
include an extensive range of electrode current drains,
operation at superficial current densities from 0.01 to
almost** 2 amp/cm2 was investigated. For the 50% porbsity
assumed, and using three current density values per decade,
values of current density considered were

-1* = 0.02,0.05,0.10,0.20,0.50,1.0,2.0,3.0,3.8 amp/cn® (4.2-8)

The values of the parameters describing the cadmium elec-

trode, and its operation, given in the preceding paragraphs

correspond to the input parameters characteristic of the system

Private communications from U. B. Thomas, Head, Electro-
chemical Research and Development Department, Bell Telephone
Laboratories.

This 1s limiting superficial current density for 5=0.01 cm.
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N =2
Zl=-l ,Z2=+l

T, = 2.00 (4.2-9)
v, = 1.00

a = 0.50

£ = 5, 50, 500.

The operating conditions studied are represented by the
input parameters

A =0,0.1, 0.5 (4.2-10)

p =0.10,0.25,0.50,1.00,2.50,5.00,10.0,15.0,19.0.

To keep the number of cases computed from becoming excessive,
the effect of different £ values was studied only at A=0.1,
and that of different A values only at £=50. The cases of
operation considered for the cadmium anode were, then, as‘
listed and identified in Table TI.

For comparison purposes, certain operational cases were
analyzed wilth a Tafel type overpotential matched to the
redox type expression at 1® — 5 ®. These cases are tabulated
in Table II.

The calculated operation of the cadmium anode at steady
state 1s presented in Appendix V for each of the cases listed
above. The description takes the form of curves of transfer
current density (reaction rate) and KOH concentration as
functions of position, in depth, in the electrode. In inter-
preting these curves i1t must be remembered that they involve

non-dimenslionalized variables and that for thils system the



TABLE I

Cases of Operation Considered for Cadmium Anode in SN KOH
Redox Overpotenhial

Case Number £ A B
Al 50. 0.1 0.05
A2 (T) 0.10
A3 0.25
A4 0.50
AS(T) 1.0
A6 2.5
A7 5.0
A8(T) 10.
A9 15.
Al0 v 18.

| A1l 500. 0.10

} Al2 1.0

i A13(T) 10.

; Al4 v 15.

| Al5 5. 0.10

| Alé 1.0

| A17(T) 10.

| A18 Y v 15.
Al9 50. 0.0 0.10
A20 1.0
A21 10.
A22 \ 15.
A23 0.5 0.10
A24 | 1.0
A25 v M 3.0

TABLE II

Cases of Operation Considered for Cadmium Anode in 5N KOH
Tafel Overpotential

___ Case Number £ A B
A27 50. 0.1 0.10
A28 1.0
A29(T) 10.

A30 : 15.
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superficial current density is -0.1PB (amp/cmz); the transfer
current density is 2B %%-(amp/cms) or 2 x 107% B %I—(-(amp/cm2
pore wall); distances are 0.1 Y (em); and overpotentials
0.0256 @ (volts).

The steady state operation of the system is summarized,
and the effect of variations of the parameters B, £, and A
demonstrated, in Figures 4 through 10. These represent
predictions of system behavior based upon a redox type
overpotential expression. In Figure 4 the distribution of
transfer current (in depth) in the electrode is shown for
several values of B for £=50, A=0.1. Similar curves are
presented for higher and lower exchange current densities,
£=500 and 5, respectively, in Figures 5 and 6. It can be
seen in Figure 4 that as B is reduced, a distribution is
reached (at about P=0.5) which is not affected by further }

reductions in current drain (B). This same phenomenon

occurs for the other values of €. Comparison of Figures 4,

|
|
|
i
S5, and 6 reveals the profound effect of exchange current
density (£) upon current distribution, particularly at lower
current drains. This effect i1s clearly illustrated by the
comparison of current distributions at B=1.0, A=0.1 for
€=5, 50, and 500 in Figure 7.

The effect of different transfer layer thicknesses upon
current distribution is small at moderate current drains
as should be expected.for a binary electrolyte. This is

shown in Figure 8 for B=1.0, £=50. In essence, the presence |
of a transport layer serves only to decrease the concentration ‘
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Flgure 4. Current Distribution at Steady State for
Cadmium Anode (5N KOH). £ = 50., A = 0.1.
(Redox Overpotential)
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Figure 5. Current Distribution at Steady State for
Cadmium Anode (5N KOH). ¢ = 500., A = 0.1.
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of species at the electrode surface, and, since for a binary
electrolyte such as KOH the concentrations of anions and
cations are always equal (or in fixed ratio), this effect
appears as a change in the "effective" value of B at the
electrode surface. Large concentration changes are encoun-
tered only as limiting superficial current density is
approached. At this Juncture, which corresponds here to a
value P=2 /A, transfer current becomes concentrated in the
very filrst layer of the electrode and overpotential increases
without limit.

The behavior of total electrode overpotential, @o,
exclusive of the resistive potential drop across any
effective transport layer present, is presented in Figure 9
as a function of current drain. For convenlence, a logarith-
mic representation has been chosen; in this way the behavior
over a wide range of conditions may be examined. For all
conditions of € and A, up to quite significant superficial
current densities, a linear relationship (unit slope on log
plot) exists between @o and 8. This linear behavior is
characterized by a zero intercept and thus a form

o, =Db B (4.2-11)

where the slope b is a function of £ and A. Values of these
limiting slopes are given in Table III. At higher values

of B (say above 1 to 5) this linear relation ceases to hold
and the @O vs. B slope lncreases rapidly. The overpotentials

are, at equivalent values of B, higher for low exchange
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current densities and high transfer layer thicknesses, as
would be expected from elementary considerations. For a
vanlshing transfer layer thickness, that is in absence of any
reduction of electrolyte concentration at the electrode face,
the linear behavior persists even under conditions where
local transfef current densities in the front section of

the electrode (where essentlally all reaction occurs) are

high compared to the exchange current density.

TABLE III

Limiting Overpotential Slopes
Cadmium Anode in 5N KOH

£ A b
5. 0.10 - 0.303
0. 0.00 - 0.087
0.10 - 0.112
0.50 - 0.212
500. 0.10 - 0.053

It is apparent in examining the distribution of transfer
current in the one dimensional model of the cadmium anode,
in Figures 4, 5, and 6 or in Appendix V, that the portion of
the electrode contributing sighificantly to the current
being drawn may be very small indeed. Since this part of
the electrode 1s that closest to the electrode surface (and
the counterelectrode), this behavior can be characterized
by a "depth of penetration”, Yqy, Oof the electrode reaction
into the porous matrix, taken as the value of Y at which the
current in the electrolyte, I, has fallen to 10% of its

value at the electrode face (where I=1.0). This distance,



then, 1s the depth of the region near the face of the elec-
trode in which 90% of the electrode reaction occurs. Y90
is deplicted as a function of B in Figure 10. Here curves

are given for £=5, 50, and 500 at A=0.1 and the effect of

A is illustrated for £€=50. The depth of penetration has

a limiting value at low B which decreases sharply with in-
creasing € and is independent of A. ‘As B increases the pene-
tration decreases abruptly above B=1, becoming zero at the
value of B corresponding to limiting superficial current
density for the transfer layer thickness, A, under considera-
tion. For high exchange current densities the reaction

may be confined to a narrow zone (<0.02 cm) near the face of
the electrode for all values of B.

This behavior has been predicted and discussed by many
investigators (see Section 1.2) but the influence of the
effective transfer layer exterior to the electrode has not
been cited. As exchange current densities should be high
for favorable overpotential behavior, and in any event are
not subject to control, the reduction of transport resistance
exterlor to the electrode assumes considerable importance in
effective utilization of the porous electrode at high cur-
rent densitieé. This can also be seen from the overpotential
curves of Flgure 9.

Transient behavior has been analyzed only for certain
cases selected from those examined at steady state and listed
in Table I, for reasons of the computational time involved.

These are indicated in the aforementioned table by the symbol
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(T) following the case number. Calculated transient operation
of the cadmium electrode in each of these instances is pre-
sented as plots of transfer current densities, concentration,
and electrode overpotential against elapsed time in Appendix
VI. The number of transient cases computed is sufficient to
illustrate the significant aspects of the non-stéady state
behavior of the system and the influence of B and ¢ upon

this behavior.

Representative of the transient operation of this system
is the pattern shown in Figure 11 for £=50, A=0.1, and P=10.
In this graph - %% and Cl at Y=0 and 0.1, and @o are given
as functions of the dimensionless time, T, elapsed since
completion of the circuit. 1In its evaluation the conversion
of T to time in seconds according to t=500T yilelds a better
Insight into the significance of transient effects. 1In
Figure 12 current distribution over the front half of the
electrode is shown at several elapsed times, for the same
case as 1in Figure 11. Here the nature of the transient
effects can be clearly seen. The initial current densities,
except at the very face of the electrode, are depressed in
the locations where they are large, due to depletion of
reactant. Current densities toward the rear of the electrode,
initially small, change little until reactant is consumed
at these poéitions and then decrease. During much of the
transient process, the distribution of current is consilderably
flattened over the rear portion of the electrode.

The transient processes take place over a characteristic
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Figure 11. Transient Behavior of Cadmium Anode
(5N KOH). € = 50., A = 0.1, B = 10.
(Redox Overpotential$
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Figure 12. Current Distribution at Several Elapsed
Times for Cadmium Anode (SN KOH).
£ =50., A =0.1, B =10.
(Redox Overpotential)
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time, here taken as the time over which the change in over-
potential between initial to steady state values is 90%
completed, which remains at approximately T90=0.6 over a
wlde range of conditions. This corresponds to a transient
occurring over a period of 300 seconds.

Use of the Tafel type overpotential expression instead
of the redox expression leads to markedly different steady
state and transient behavior. Results of calculations of
the cases enumerated in Table II are given in Appendix V
for steady state and in Appendix VI for transient analyses.
Behavior for £=50, A=0.1, is summarized in the steady state
in Figure 13 and as a transient time plot for B=10 in
Filgure 14. These figures are of the same format as those
used for the cases calculated with a redox overpotential
expression. The marked influence of the difference in
overpotential relationship i1s apparent in comparing Figures 4
and 13 or 11 and 14. Thils effect will be discussed in
Chapter 5. The electrode overpotential for the Tafel case
1s depicted by a dashed curve in Figure 9, where it can be
seen to‘approach the behavior of the corresponding redox
case at very high current drain.

It is not intended that the results presented in this
section should be considered to represent the behavior of
any actual cadmium anode. Rather, they represent an illus-
tration of the application of the one dimensional pprous
electrode model, together with a description of the type of

behavior to be expected in such an electrode and the
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qualitative effect of system parameters upon this behavior.
An accurate overpotential expression would be needed before
any quantitative analysls could be undertaken. Moreover, the
dlscharge of a cadmlium anode actually involves significant
changes in the properﬁies.of the matrix, assoclated with con-
version of the solid reactant, counter to the assumptions of
this model. Other factors, such as the solubility of Cd(OH)2
in the electrolyte further complicate the situation. The
present treatment, however, demonstrates the importance
deriving accurate characterization of kinetic and transport
Phenomena for the system i1f performance prediction is to be
successful. It also indicates the importance of consideration

of operation in the mass transport transient condition.

4.3 Analysls of Ferri-Ferrocyanide Cathode

A reaction useful for possible experimental investigation
of current distribution in porous electrodes is the ferri-
cyanide-ferrocyanide redox couple, conveniently in NaOH
solution. This system has several desirable properties:
it 1s stable when light and oxygen are excluded; the reactant
and product are both dissolved specles 1n the electrolyte,
allowlng reaction to proceed with no'sighificant alteration
of the electrode matrii; the reaction does not involve
water; the reaction may be run cathodically to appreciable
overpotentials without hydrogen evolution; the electrolyte
and reéction are compatible with nickel electrodes; the
ionic strength of the solution remains relatively constant;

and, the system has been extensively studied and many of
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1ts properties are well established. For any practicable
current distribution measurement this couple has, however,
the severe limitation of a highly nonuniform current distribu-
tion at steady state in porous media. This will be discussed
later in this section. The ferri-ferrocyanide reaction in
NaOH is also representative of systems with excess inert _
electrolyte; thus analysis of porous electrode using this
reactlion wlll present a contrast to the binary systém treated
in Section 4.2.

If the cathode is selected for analysis, the reaction
occurring 1s

-3 -

Fe(CN)5° - Fe(CN)g* — - &™. (4.3-1)

*
In a 2N NaOH solution the species present in the electrolyte
are Fe(CN)é3, Fe(CN)g4, Na¥, and OH™. These will be desig-

nated, in the order mentioned, by the indices 1 through 4,

giving
zq = -3; Zy = -4, Zg = +1; 2y = -1
Vi =415 Vo = =15 vz = v, =0 | (4.3-2)
cZ =2 x lo—sgmol/cms; cg =2 x 107%%4 Sci + 405 gmol/cm3

In 2N NaOH, diffusion coefficients for the Na+ and OH™
ions have not been establlished as known functions of concen-
tration, as was also the case for KOH as mentlioned in the
previous section. Using molecular diffusion data from

. L 36 o
International Critical Tables“” , converted from 15°C to 25°(C

This concentration 1s selected on the basis of availability
of data and suitability for suppression of hydrogen
evolution.
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5

by considering Du/T constant, the value D =1.6 x 10~

NaOH
cmz/sec is found for 2N NaOH solutions. This, taken with the
observation that at concentrations above 1 N, the anion
transference number 1s approximately 0.8 (see Landolt-

37)

Bornstein s 8lves D4=4.1 X 10_5 cmz/sec. The value will,

however, be decreased in the presence of other components
in the electrolyte, as noted by Vinograd and McBain38 among
others. Based upon quite subjective considerations the

approximation

D,F = 3.2 em? coul /gmol sec (4.3-3)

has been selected for the diffusion coefficient-Faraday
product for OH . No claim is made for the accuracy of this
cholce, although it certainly is a sufficiently good approxi-
mation for this example. The corresponding value for Na+

is then

D;F = 0.8 om? coul /gmol sec. (4.3-4)

From the data of Eisenberg, Toblas, and Wilke, the diffusion

=5 and Fe(CN):%* in 2N NaOH at 25°C
5 6

5

coefficients of Fe(CN)

39

are 0.527 x 10™° and 0.418 x 10~ cmz/sec, respectively.

The approximation
2

DlF = D2F = 0.5 cm

coul /gmol sec (4.3-5)
is approprilate, considering the uncertainty of the other
transport parameter data.

The electrode kinetics of the ferri-ferrocyanide couple
have been reported for many conditions of reaction. The

data of Petrocelli and Paoluccl, measured for 0.4M Fe(CN)é3
and 0.4M Fe(CN)g4 in 2N NaOH on bright platinum seem
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appropriate for this analysis.4o According to these authors,
a redox type overpotential expression with

a = 0.5

1o

0.025 amp/cm2

characterizes the reaction.

The electrode structure parameters for this system will
depend upon the nature of experimental apparatus that might
be chosen. If fissures or other artificially constructed

*
ideallzed pores are considered, practical values might be

a 200 cmz/cm3

(4.3-7)
£ = 0.33 cm.

No porosity conversion need be considered, the fluxes and

current densities referred to effective pore cross section

‘being appropriate in the context of this example. For this

analysis, equivalent transfer layer thickness will be taken

as zero except for a few cases when 5=0.03 cm was investigated

for comparison.

In analyzing behavior under a variety of operating con-
ditions the following values of ferro and ferricyanide con-
centration and of total current density have been chosen.

In all cases equal ferro and ferricyanide concentrations were
used.

cls cg = 0.02, 0.10, 0.20 M

i* = 0.001, 0.003, 0.01, 0.03, 0.10, 0.30 amp/cm2 (4.3-8)

Because of the high exchange current density, a and £
should be as small as permits electrode construction and
current distribution measurements.
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These values represent quite well the range of operation of

such a system that would be of experimental interest.
Corresponding to the values cited in the preceding

paragraphs, the 1nput parameters characteristic of this

system are:

N =14
z, = -3; Zo = -4; Zg = +1; z, = -1
vy = +1; Vo = ~-1; Vg = 03 Vy = 0] (4.3-9)
T = 0.156; Ty = 0.156; Ty = 0.250
a = 0.5
€ = 80.
The operating conditions listed are represented by the
parameters:
A =0, 0.1
Y1= Yo = 0.01, 0.05, 0.10 (73 = 1.07, 1.35, 1.70) (4.3-10)

p =0.05, 0.15, 0.50, 1.50, 5.0, 15.0.

 As in the analysis of the cadmium anode, not all possible
combinations of the operating parameters were subjected to
analysis. The cases calculated are listed in Table IV, the
selection being made to investigate the effects of varia-
tions of B, ¥, and A, in each case with other operating para-
meters heid constant.

The behavior of the ferri-ferrocyanide cathode as calcu-
lated for the steady state 1s detailed by the curves contained
in Appendix VII for each case considered. The curves are as
described for Appendix V in Section 4.2. In their interpreta-

tion the dimensionless varlables involved may be converted
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TABLE IV

Cases of Operation Considered for the
Ferri-Ferrocyanide Cathode in 2N NaOH

(Overpotential per Petrocelli and Paolucci4o)
Case Number A Y1:Yo B
Bl 0.0 0.05,0.05 0.05
B2 0.15
B3(T) 0.50
B4 1.5
B5(T) 5.0
B6 15.
\
B7 0.01,0.01 0.05
BS(T) 0.50
B9 5.0
v
B10O 0.10,0.10 0.05
B11(T) 0.50
B12 | 5.0
Y Y
B13 0.1 0.05,0.05 0.015
B14 l 0.05
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to dimensional form as follows: pore current density (inlet)
is 0.028 (amp/cmz); transfer current density is 3 x 10—45 g%
(amp/cm? pore wall); distances are 0.33Y (cm); overpotential
is 0.0256 ® (volts).

The performance of the electrode at steady state is
summarized in Figures 15 through 17. The influence of current
drain, B, on transfer current distribution for v1=72=0.05
and A=0 1is 1llustrated in Figure 15. As was the case with
the cadmium anode, a limiting distribution is reached at low
values of B which 1s not affected by further reductions in B.

- In contrast with the cadmium anode case, however, the high
degree of nonuniformity of current distribution, even at this
limiting condition, should be noted. This phenomenon has
required that only one-tenth of the electrode be represenfed
on the distance axis .of Figures 15 and 16, and that the

- %% axls be shifted up an order of magnitude from the

scale used in Section 4.2.

This nonuniformity of current distribution is the result
of the‘combined effect of the high exchange current density
(or parameter £) for the system and the presence of the excess
inert electrolyte, NaOH. The latter influence 1s demonstrated
by observing the changes in current distribution occasioned
by altering the bulk concentrations of Fe(CN)é3 and Fe(CN)é4
(éimultaneously) as shown in Figure 16. This actlon is
equivalént, with appropriate adjustment of B and €, to
changing the concentration of NaOH. The distribution of
transfer current becomes more uniform as Y1 and,'y2 increase

but remains highly nonuniform for any case where the system
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can even remotely be considered to contain "supporting
electrolyte".

- Electrode overpotential is represented as a function
of B in Figure 17. Again, as in the case of the cadmium
anode, the relatlonship is linear up to reasonably large
values of B (~2), the slope (position on the logarithmic
plot used) being dependent on the values of Y1 and Yo - Since
these curves represent the case for A=0, no limiting current
behavior occurs; rather, the overpotentials deviate nega-
tively from the linear behavior as B becomes large and
approaching ultimately a proportionality to iuB. In no case
of steady state operation for the ferri-ferrocyanide cathode
is there any significant penetration of the reaction into
the depth of the electrode.

The behavior of the system under transient conditions
was analyzed for several of the cases previously enumerated,
these being designated by a "(T)" in Table IV. The calculated
results for these cases are contained in the graphs in
Appendix VIII. Typical of the transient performance of the
electrode is that for Y1 = Vo = 0.05, A=0, B=0.5, which is
represented by the time plots in Figure 18. Here the initially
raplid rise in overpotential, and in transfer current density
at the front of the electrode, 1s apparent; the appropriate
fime convefsion is £ = 3.4 x 103 T sec. The change in current
distribution with time 1s shown in another way by the curves
of Figure 19, representing transfer current as a function of

position at various elapsed times. The corresponding



I RRE I |

1

100

R Ilw

I

10

T TTTTT] T T T ITT]

0.1

Illll

Lol L

I Illll[

Lyl

1

TTTTTT]

] llllll

RN

|

|

RN

]

Lt 1

|

m

0.1

Figure 17.

£ = 80.,

1

B

(n +
VL v

10

Electrode Overpotential at Steady State

for wclm\ﬂ‘s -
for Fel(CN)g E

A = 0.

hode (oN N
A AW

VLN NN

7
JLL ) »



115

| ! [ | ] I I
1.4
1.2
|
o
X
o 10 1.0 42
]
>
- TO 0.91 =——> —
ol B
V| 0
CT l Ond
o ] ] 0
'; 3 “2/ €2
ﬁ 0.6 ‘ —
> |
> | 0.5 1
Vi |
' 0.4 I -
|
l —
I
0.2 : _
| _
|
ol 1 — ' 444 L o o
0 0.4 . 0.2
Tgo = 0.144
T
Figure 18. Transient Behavior of Fe(CN)é3 - Fe(CN)é4

Cathode (2N NaOH). ¢ = 80., Y1 = Y, = 0.05,

A=O, Pz UVed e



0.002
: 0.003 AN \
— \ b
0.01 S—————
0.05
0 | | | I
0 0.1 0.2 0.3 0.4 0.5
Y
Flgure 19. Current Distribution at Several Elapsed
Times for Fe(CN)g> - Fe(CN);* Cathode

(2N NaOH). v = 80., Y1 = Yo
A =0, B=0.5.

= 0.05,

116



[ | [ [
0.07 -
T =0.1
C], C2 0.05
0.06 C, (PRODUCT) 7]
0.0007
/ 0.01
’Z/ 0.002
| 0.002 ,
0.01
0.04} C| (REACTANT) m
| 0.05
0.03 T =01 —
0.02 =
0.01 -]
0 | | | i
0.1 0.2 0.3 0.4 0.5
{
Y
Figure 20. Concentration Distribution of Reactant
and Product at Several Elapsed Times for
Fe(CN)5> - Fe(CN)z* Cathode (2N NaOH).
€=80-,'Y1 = Yo = 0.5, A =0, B=20.5.

117



118

distributions of reactant and product concentrations are given
in Figure 20, where transient effects can be followed in the
absence of the concentration changes at the face of the
electrode imposed by an external transfer layer.

The initially moderately nonuniform current distribution
1s altered with passage of time by the rapid depression of
reaction rate at areas sufficiently distant from the face of
the electrode to create inhibitions of reactant supply (and
product removal) and yet close enough to the face to have
favorable potentials. Increasing reaction rates are noted
for areas very close to the face, due to their favorable
accessibility to bulk electrolyte, and by areas deep in the
electrode, due to their store of as yet unused reactant.

The effects of increasing overpotential and cdnsumption of
reactant (along with increasing product concentrations) tend

fo create a very uniform current distribution in all but the
front part of the electrode during the transient. This

uniform level decreases and 1ts starting location moves deeper
into the electrode as the concentrations approach their steady
state values and diffusive transport becomes important at
successlvely deeper points in the pores. The family of current
distribution curves at increasing timeé generates an envelope,
at least in the front portion of the electrode, which closely
follows the steady state distribution which will ultimately

be reached. Eventually the reactlon occurs at significant
rates over only the narrow portion of the electrode previously

.mentioned as active at steady state. The characteristic times



for this process, as defined in Section 4.2, vary over the
range of T90=O.Ol to 1, that is, 30 to 3000 sec.

This analysls of the behavior of the ferri-ferrocyanide
cathode indicates 1ts disadvantages for steady state inves-
tigations of current diétribution in porous electrodes, to-
gether with its sultability for some transient measurements.
The highly nonuniform current distributions at steady state
would preclude any measurements of such distributions. How-
ever, the inltial distributions are sufficiently uniform
to permit design of meaningful transient experiments. The
transient effects are marked and take place over periods of
time well sulted for experimental observation. For the case
depicted in Figures 18 and 19 current distributions over a
period of about 1 minute would fall in a range amenable to
measurement. Other, perhaps more suitable, systems can be
analyzed to obtain predictions of steady state behavior
which may be experimentally verifiable. Lack of basic
kinetic and transport data prevents this analysis in most

cases, at the present time.
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5. CONCLUSIONS

Certain general characteristics of the behavior of porous
electrode systems, at least as far as they can be represented
by the one dimensional model of thils dissertation, will be
summarized in the paragraphs that follow. These behavior
patterns are significant. However, they do not constitute
the principal results of thls investigation, but, rather, only
an illustration of the application of the end product of the
study. What was sought was ggg'gggg but a procedure that would be
used to develop performance predictions for electrode systems
of interest. Such a procedure has been developed and has
been demonstrated on the calculation of behavior of realistic
systems. The limitations of this work lie in the limitations
on applicability of the procedure, as enumerated in Chapter 2.
Its value lles 1in the ability of the procedure to analyze
performance of a flooded porous electrode, glven complete and
accurate data for the transport and kinetic behavior of the

system ihvolved.

5.1 Behavior of Porous Electrode Systems at Steady State

The operation of a flooded non-flow, porous electrode at
steady state 1s characterized by a moderately to highly non-
uniform distribution of electrode reaction (transfer current)
in depfh‘iﬁ the electfdde (sée Figures 4; 5,.6.and 15). This
nonuniformlty profoundly affects the overpotential-current

relationship for the electrode causing it to deviate widely



from the overpotential expression for the reacting syétem.
At low currents the relationship 1s linear (but does not have
the same slope as the local‘overpotential expregslion at
vanishing transfer current). At higher currents it deviates
toward lower overpotentials from this linear relation, except
In the presence of external resistance to transport of the
reactant to the electrode face (equivalent transfer layer),
when, of course, 1t increases sharply as limiting current‘
is approached. The general overpotential behavior of a
porous electrode cannot be simply described nor easily deter-
mined from the overpotential expression for the reaction.
Such approximations as that proposed by Ksenzhek* are appli-
cable only under extremely restrictive conditions. Each case
of interest must be separately analyzed. The nonuniform
current distribution also reduces the portion of the electrode
which significantly contributes to the electrode reaction
(see Figure 10). 1In many electrodes only a'very narrow
portion adjacent to the face is effective.

The distribution of transfer current in an electrode
becomes more nonuniform with increasing valueé.of the para-

meters € and B, and decreasing values of v for the reactant.

Ksenzhek16 proposed that the overpotential for a porous
electrode, with a reaction represented by a Tafel type
overpotential expression, was a linear function of the
logarithm of current density with a slope equal one-half
the Tafel slope for the reaction. To do thls he assumed
the potential was constant throughout the electrolyte
in the pores.
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Thus high values_of exchange current density, specific
electrode surface, or electrode depth, all of which lead to
high € values, and high current drains, which give high B
values, cause nonunifofm distributions. These conditions,
with the exception of large electrode depth, are commonly
encountered (and desirablé) in porous electrode applications.
If B is decreased, that 1s, if lower current drains are
considered, the current distribution becomes more uniform only
up to a polnt, approaching a limit which still may be very
nonuniform. This effect can be observed in Figures 4 and 15.
Lower values of £ again lead to more uniform electrode reac-
tions only within the 1limit imposed by the nonuniformity of
the distribution at €=0. This latter case corresponds to
the distributions calculated with a Tafel type overpotential
expression, such as those shown in Figure 13.

By and large, the nonuniformity of reaction at the steady
state is not subjJect to control without incurring other un-

desirable effects, principally increased overpotential.

9.2 Transient Behavior in Porous Electrode Systems

The transient behavior of a porous electrode system,
taken in this work to be the behavior over the period from
completion of the circult until steady state 1s achleved at
constant current drain, involves the complex phenomena of
reacfion distributions which are not only nonuniform but
changing with time. The course of such a traﬁsient process,
leading from a moderately nonuniform initial state to a

highly nonuniform steady state, has been described in some
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detail in Section 4.3 and illustrated in Figures 18, 19, and
20 (along with others). It is significant to note that
although the reactant content is but slowly depleted in those
deep portions of the electrode where transfer current den-
silties are small, reactant supply froﬁ the electrolyte in the
depth of the electrode to the areas near the face where
reactlon rates are high 1s usually quite small compared to
supply from the electrode face. Thus the presence of a
reservolr of reactant in the pores often significantly
affects the course of the process only in those parts of the
electrode where very little current is transferred.

The transient processes are characterlized by times (to
say 90% of total overpotential change as clted earlier)
on the order of 10 to 104 sec. Since many applications of
"porous electrodes involves operating periods which are not
long compared to this time range, transient behavior should
be carefully considered in analysis of cells involving
porous electrodes. The magnitude of the characteristic time,
in dimensionless form, is relatively constant o#er wlde
ranges of operating conditlions for cases where migration is
the most significant reactant transport mechanism, that is
for binary electrolytes. In this case changes 1n concentra-
tion have no effect on the dimensionless representation, and
increasing current increases reactant transport as well as
cdnsumption. For cases where migration is only a secondary
reactant transport means, excess inert electrolyte being

present, the duration of the transient phenomena are strongly
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influenced by manner of operation. Here, characteristic
times are decreased by increasing B or decreasing v of the
reacting species, corresponding to raising current drain and
to lowering reactant concentrations, respectively. If the
reactant (and product) are transported almost entirely by
diffusion, Too is roughly proportional to v and to 1/B.
However, for most systems transient periods would not be short
for any practicable combination of these parameters. Kinetic
parameters have a relatively small influence on the character-
istlc times. Decreasing the depth of the electrode reduces
the duration of transients, but, because of the effects
mentioned in the preceding paragraph, not so much as the
dependence of the T to't conversion upon 22 would lead one
to expect. For systems where the reactant species are in
large concentration, as in most batteries, the transients are
quite long and relatively independent of current. Operation
in the steady state may be the exception rather than the rule.
It was mentioned in Section 2.1 and developed in
Appendix I that time constants for translent behavior in
porous electrodes would be long compared to electrical time
constants for discharge of double layer capacitance. This
1s now clearly seen to be the case, the electrical time

4

constants having typically values in the range of 10 - to

10_l sec. This constitutes additional Justification for
ignoring capacitative terms 1in equation (2.1-9) and those
developed from it, in spite of the importance assigned to

their effect by some previous investigators (see Section 1.2).
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5.3 Influence of Qverpotential Expression

The calculational procedure developed in this investiga-
tion was based upon no particular form of the overpotential,
or electrode reaction rate, expression. However, as discussed
in Section 2.4, the Tafel and redox type overpotential
relationships were selected for use in example calculations,
the redox type being considered a realistic representation
for most electrode reactions which might be encountered.
However, other choices could be made for such expressions,
based upon the kinetics of the electrode reaction involved.
The nature of the rate (overpotential) expression used in
the analysis of a porous electrode to a very large extent
determines the behavior that will be predicted for the elec-
trode.

The effect of the cholce of overpotential expression
upon the analysis is well illustrated by the case of the
cadmium anode, described in Section 4.2. This electrode,
for £=50. and A=0.1 has been analyzed using, in turn, the
redox type expression, the Tafel representation corresponding
to this redox expression at high overpotential, and the
linear formulation corresponding to it at low overpotential
(and in the absence of concentration overpotential-see Section
2.4). The current distributions resulting from these analyses
at B=1.0 are presented in Figure 21 and the electrode over-
potential curves in Figure 22.

For the case chosen, the Tafel expression yields current

distributions which are much too uniform, compared to the
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Flgure 21. Current Distribution at Steady State for
Cadmium Anode (5N KOH). ¢ = 50., A = 0.1,
B = 1.0.
(Calculated using overpotential expressions
indicated.)
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Figure 22. Electrode Overpotential at Steady State
for Cadmium Anode (5N KOH). ¢ = 50.,
A=0.1, B = 1.0.
(Calculated using overpotential expressions
indicated)
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distributions calculated with the redox formula. The linear
expression here gives behavior that deviates only moderately
from the redox case. At a higher value of B the Tafel
based curve would ﬁore closely approximatetthat for the redox,
while the distribution resulting from the linear approxima-
tion would deviate much morg widely. At very high values
of B the Tafel and redox expressions yield current distribu-
tlons which are almost identical in that portion of the
electrode where significant reaction takes place. However,
this only occurs at values of B which are too large to
correspond to any practical condition of electrode operation.
At vanishing values of B the redox based curve and that
derived for the linear approximation are identical.

The overpotential behavior of the electrode, as based
on a redox type expression, is compared to the behavior
for Tafel and linear type expressions in Figure 22. The
overpotentials predicted by the Tafel form are asymptotic
to those predicted with the redox expression as B becomes
large (here B=20 corresponds to limiting current). The linear
approximation gives overpotentials close to those calculated
for the redox case at small B, but the limiting slope of the
latter overpotential curve at low B does not correspond with
the slope of the straight line overpotential relation
resulting from use of this linearization. Most significantly,
over the rangé of B=1 to 10, which corresponds to the
conditions of operation expected for a cadmium anode, analyses

based on the Tafel or on the linear expression are inadequate
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They predict electrode performance not even remotely approxi-
mating that from an analysis based on the redox overpotential
equation.

It can be concluded that the type of overpotential ex-
pression utilized in the analysis of a porous electrode,
and the values of the parameters used in that expression, is
critical. The redox type formulation has been shown to be
valid for a number of systems (see Vetterzz) but cannot be
assumed arbitrarily. The use of a Tafel type expression may
be valld for some systems, but its employment as an approxi-
mation to a redox form is clearly counterindicated. Such an
analysis could have value only under conditions where the
reverse ferm in the redox expression is negligible in all
portions of the electrode where significant reaction takes
place; this condition usually requires prohibitively large
overpotentials. The linearization of the redox expression,
around vanishing overpotential or any other chosen over-
potential value, can have validity only over a narrow range
of overpotentials, and thus of transfer current densities.
.However, porous electrodes are characterized by a simultaneous
exlstence of wide ranges of transfer current densities at
different positions in the electrode. The only condition
to which such aﬂ analysis might reasonably be applied is
that of vanishing current drain. In using any overpotential
expression in‘analyzing porous electrode behavior, the effect
of variations in the form and in the parameters of the

expresslion within the range of their uncertainty must
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certainly be investigated. The use of several values of
exchange current density in Section 4.2 is an example. It
may be found that in many cases meaningful analysis of the
behavior of the electrode system is not possible without more

preclsely known overpotential expressions.

5.4 Proposed Extensions of the Investigation

This investigatlion has established a model for a flooded
porous electrode with no hydrodynamic flow of electrolyte in
the pores, and, from this model, developed a procedure for
analysis of the dynamic behavior of the electrode. 1In
defining and analyzing this model certain limitations have
been lmposed by assumptions introduced concerning the system
and its behavior. While certain of these assumptions (e.g.,
that of constant transport parameters) are necessary because
of lack of data for alternate treatments, this work could
be extended to eliminate the necessity of others. Such
extensions would logically include the introduction of flow
terms in the flux equations (and corresponding source terms
in the conservation equations) to account for the generation
(or elimination) of electrolyte volume in the course of the
reaction and the consideration of electrode matrices which
possess significant electrical resistance.

Also, a pressing need exlsts for extension of this sort
of analysis to cases where the properties of the electrode
matrix change in course of the charging or discharging of the

electrode. All real battery systems fall in this category.
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Unfortunately, little 1s known about the nature of these
effects on a local basis at the present time; such a know-
ledge 1s prerequisite to incorporation of these considera-
tions into porous electrode analysis. However, models should
be developed which account for such phenomena in a general
way and can be adapted to the characteristics of a particular
matrix when these become known. Some first efforts, of a
very approximate nature, have been made 1in this direction

by Winsella.

Finally, experiments confirming the results of applica-
tions of this procedure are required. These should include
measurements of overpotential as a function of current drain
and distribution of transfer current in depth for well
described porous electrodes of both random (sintered, etc.)
configuration and idealized geometry (micro filssures and
cylinders). The current distribution measurements require
sectioning of the electrode in depth without destroying its
uniformity, a difficult undertaking where resolution to
fractional millimeters might be required. Such experiments
could only be based upon a redox system for which complete
and accurate overpotential and transport properties were
available due to the sensitivity of the analysis to these
factors, particularly the former. The ferri-ferrocyanide
couple discussed in Section 4.3 meets these requirements as
well as any other avallable, but even here, uncertainty
in diffusion coefficients and exchange current densities would

limit verification to qualitative comparisons only.
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Ultimately, the significance of thils work consists
primarily in three aspects: First, it relates the dynamic
behavior of flooded porous electrodes to the basic transport
and kinetic phenomena determining such behavior. Second,
it demonstrates the general characteristics of the transiént
and steady state performance of such electrodes and the in-
fluence of conditions of operation upon the performance. And,
third, it provides a method of predicting performance of
systems for which adequate basic information is available.

At the same time, this analysis agaln indicates the great

need for accurate fundamental data for electrochemical systems.
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APPENDIX T

Capacitance Effects in Porous Electrode Dyamics

If the considerable capacltance of the electric double
layer over the extended interface in a porous electrode is
considered, 1t 1s apparent that the expression given in
Section 2.1 for conservation of current should also include
a capacitive term. Thus equation (2.1-9) would become

V’_i_=Si-aog%=-a<iS+o%> - (1-1)
where o = interface capacitance per unit area (F/cmz).
However, g%-is significant only during the initial charging
of the capacitance (at switch-on time). This proceeds, as

shown by.Ksenzhele, with a time constant
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_ 2
g1 =P8 0L (1-2)
where p = effective resistivity of electrolyte in pores(ohm cm)
2 = characteristic dimension of system (cm).

The time constant for the mass transport process is of the

order of the diffusion time constant

2
®31r = D (1-3)

Using a typical value for electrolyte resistivity of

) 3

the order p = 1 ohm cm, for surface area of a = 10 cmz/cm ’
and for surface capacity of 20 uF/cm?

~ 2
'eel ~ 24" sec



134

which 1s in agreement with the results of Euler14 irf

-2 ..-3

£ =10 "-10 ¥ cm. Similarly using a value of D = 107°

cmz/sec
it is seen that the order of magnitude of the diffusion time

constant 1is

S ,2

edif = 10" £ sec
Comparing these results

2]

St T2 x 1070

“dif

and therefore the capacitative effects occur only in the
very first part of a transient process. For the purpose of
thls study they can be conslidered as completed instantaneously

and thus ignored.



135

APPENDIX IT

Formulation of Overpotential Expressions for
Numerical Analysis

The overpotential expressions chosen for discussion in
Section 2.4, the Tafel and redox types, may be put in the

form of equation (3.2-1) as follows:

Tafel: p(CIJ,Ci) = Cr{é— exp [an@]} (11-1)
ro e |
0 -~ J#r
A, ={ 7 (11-2)
J
%—- exp  [an®] ‘ j=r
\ I |
{
c,. é— exp [an®] J#r
B, = r (11-3)
{0 J=r
Redox: p(CD,Ci). = Cr{g— exp an@]} +C {—-Xexp [(a-1 n<b]}(II-4)
0 ' J?‘P:J%p
. A =<$; exp [and] j=r (1I-5)
X ¢ - =
s xp [(a-1)n®d] J=p
-Cr C
(x47~ explan®]- £ exp[(a-1)ndlp Jsr,J+p
v i
‘ C
BJ =< - ?;l x expl (a-1)n®d) Jj=r (I11-6)
c,, ,
7o X explan®] J=p
Ur

In finite difference form AJ.,BJ are evaluated in terms of

® and Cy for a given Y and 7 index, that is in terms of &(J,K),

v Ci(J,K), and may thus be expressed as AJ(J,K), BJ(J,K)
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Accommodation of Source Term Discontinuities
in Finite Difference Representation of
Conservation Equations

The species source term in equations (3.3-10) exists
only in the electrode proper (Y > 0) and is zero in the
equivalent transfer layer (-A < Y < 0). A difgiculty arises
in assigning values to this term at the point of the finite
difference approximation corresponding to Y = 0 (23 the face
of the electrode). In order to find the correct source
term for this point consider (3.3-10) applied in the trans-

fer layer (primed variables)
oc! azc'

oc! '
#; GTJ = + 24( C} QEQ- B?J'g%—> -A<Y<0 (III-1)

and in the electrode proper

ac
#} 1 = + zj< | =% a¢ + 8y, Ozvsl (III-2)

with appropriate boundary conditions at ¥ = -A and Y = 1,
and with the 1linking conditions at Y = 0
1 =
CJ C
ac! 3 oC
ol J o
[Ti+ ZJCJ 3 3t ZJCJ 37 s - (III-4)
equation (III-4) being equivalent to
act  oC
J , 0! o _
X cw & e - (111-5)

In finite difference form, using the notation of Section 3.3,

j o' = & (I1I-3)

(ITI-1) and (III-2) become

136
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‘ - P!(J,K ‘ ' (J- 1 - 2 -] !
1 ZJ Z CJ(J 1,K)+ zJQJ(J,K) X;TKT 2 CJ(J,K)

+ l+z ——igigl-c'(J+1 K) = F,(J,K) J=1,LF (III-6)
J
and for J=LF,L

__ P(J,K) _ ' - - =& _]
1-z, T Cy(3-1,K)+|2,Qy (J,K)-T4A, (J,K) X (KT 2| ¢, (3,K)

P(J,K) 3
+-[1+zJ T CJ(J+1,K) = FJ(J,K)+TJBJ(J,K)

v 2
= ! - D_ >Bl -
FJ.(J,K)+<TJ 23 5 k(J,O)+TJBJ(J,K) (III-7)
with the linking conditions

Cj(LF,K)=CJ(LF,K); P! (LF,K)=P(LF,K); Q'(LF,K)=Q(LF,K)
(111-8)

c! LF+1,K)-03(LF-1,K) CJ(LF+1,K)—CJ(LF~1,K)

(
J o = - ) (III-9)

Substituting (III-9) and (III-8) into (III-6) taken at J=LF
2
203(LF-1,K)+[%JQJ(LF,K)- X}Tﬁﬁ"ZJCJ(LF’K)

+ [1+zj 31%245%][CJ(LF+1,K)-CJ(LF-1,K)] = Fj(LF,K). (II1-10)

Then solving (III-10) for CJ(LF-l,K) and substituting this

result into (III-7) taken at J=LF

E‘ZJH‘L%&J (1F-1.K)+ - "(L_FLIQ]

Cashne Tl

{ZJQJ(LF,K)- X}TKT -2. -TJAJ(LF,K{] J(LF,K)+20J(LE+1,K)4

2

E Z P'LF K']
+1 F IF K)+ < v >B (LF,0)+T,B,(LF,K)
E+Z gL 5 ;] 3 J J J7J

(T11-11)
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JB!E%?EQJ/z and it 1is

noted that 03 and C.j no longer overlap so that the prime can be

results. If this is multiplied by (l+z

dropped, the expression simplifies to

P(LF,K E*ng Li K.]
[}—ZJ . ]cJ(LF-l,K)+ zJQJ(LF,K)- 5 TJAJ(LF,K)

o (... P(LF,X
- Tj—(ﬂ -2 CJ(LF)K)+L1+ZJ Z JCJ(LF"']-:K)

. E+ZJP§LF! q

4 g B (LF,0)+T,B, (LF,K)
2 3725 Yy P e Dy By (LY,

(111-12)
Therefore, at J=LF, the finite difference approximation is

= F}(LF,K

the same as within the electrode (J>LF) but with the source
terms AJ(LF,K), BJ(LF,K), and B, (LF,0) weighted by the
factor

E P(LF,K)l |
+z
J . 4 - %'+‘Zj P(LF,K (ITI-13)

8 .




139

APPENDIX IV

FORTRAN II Program for Implementation of Calculations

The analysis 1s implemented for an IBM 7090 digital
computlng system by a FORTRAN II program. This consists in
a main routine (CODE-1), which merely prepares input para-
meters for calculation, a principal subroutine (ODE), in
which most computations are performed, and several accessory
subroutines (INTEG, TDIAG, PDIAG, STEP), which carry out
certain detalled aspects of the calculations. A subroutine
(TFC) 1s used to introduce whatever overpotential expression
may be desired, and another (PHIFE) to provide initial
estimates of o.

The program input (to CODE-1) consists of five punched

cards per case, as follows:

——— -—— -

1. (I4, 9F4.0, 4F8.3): N, Z15 3255V sVgsT s===5T,
2. (F8.3, 2E12.3): a, £, 7
3. (4F8.4, E12.3, F8.4): Y1s===3Y4> Bs A
4. (5E8.1): h, 8ys €715 €55 Cypg
5. (8I4, F8.2, 28X, I4, F8.2): M1, M2, M3, M4, NR,
MP, MK, MNI, TML, M7, FDAMP
The last card listed above is for control of program options

where the 1lndicators have the following significance:

M1 (1 = STEADY STATE; 2 = TRANSIENT)
M2 (1 = NO ITERATION OUTPUT; 2 = ITERATION OUTPUT)
M3 (1 = NO AUX OUTPUT [TIME, ITER. COUNT]; 2 = AUX OUTPUT)
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NR

MP
MK

TML

M7

FDAMP
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(1 = EXIT ON ELAPSED TIME; 2 = EXIT ON ITERATION
COUNT; 3 = EXIT ONLY ON CONVERGENCE)

(0 = NO BINARY TAPE OUTPUT; > O = BINARY TAPE
WITH CASE NO. = NR)

(NO. OF CALCULATION PTS PER OUTPUT PT)

(NO. OF TIME STEPS CALCULATED PER OUTPUT)
(ITERATION LIMIT FOR EXIT)

(TIME LIMIT FOR EXIT)

(0 = ALT. ¢ CALCULATION & FIXED CURRENT; 1 = ALT ¢
CALCULATION & FIXED POTENTIAL; 2 = FIXED CURRENT;
3 = FIXED POTENTIAL)

(O = MAX DAMPING FACTOR = 1; > O = MAX DAMPING
FACTOR = FDAMP).

Within the programs, the following equivalences exist

between FORTRAN varliables and external variables.

NC
v(I)
Z(I)
P(I)
a(1)
DELTA
BETA
ALFA
PC
PE
PN
H

NOTE: I

1,5

w

Q

= £/B

3 =

o]



DTI
DT

'EPS
DEV
CINSIG
c(J,I)
'PHI(JS
PHIS(J)
TC(J)
Y

TAU

L

LF
PHI1
FK(J,I)
FKP(J)
A(T)
B(J)
DP(J)
DP2 (J)
DC(J)
DC2(J)
CAPPA
FL(I)
FLK(I)

J = 1,250

Other FORTRAN variables are as defined in the routine

concerned.
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The program output 1s in the form of printed tables of
- %% (called J), ®, and C, at regular intervals of Y, ;
table being printed for each MKth time step. Values of
- g% at Y = 0, 1. by 0.1 can be printed at each iteration as
desired (M2 = 2). Error terminations and failures to con-
verge give diagnostic outputs.

The main program, CODE-1, and principal subroutine, ODE,
are listed below. They are followed by the necessary acces-
sary subroutines. Examples of the subroutines TFC and PHIFE
are also listed; however, these programs should be written
(with connection to ODE as in the example) to correspond

to the overpotential expression in effect and the associlated

estimated behavior.
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MAIN PROGRAM - DATA READ IN AND SET uP
CCODLC-1 ANALYSIS OF ONE DIMENSIONAL POROUS ELECTRODE SYSTEM
C 17 MAY 63 - E A GRENS
01l FORMATI(1499F44094FB43)
02 FORMAT(FB8e392E1243)
03 FORMAT(4FBe49E12e39F8e4)
04 FORMAT(5EB.1)
050 FORMAT(814sFB8e2y28Xs149FBeQ)
11 TORMAT(8H1IFOR THE»12»51H COMPONENT SYSTEM CHARACTERIZED BY THE PAR
1AMETERS -)
12 FORMAT{S5Xs1lHZ9[191lH=9F3e099Xs1HVellelH=9F34099X91HPsIls1H=9F6e3>
1 IX9lHGsIlslH=9sFT7e4) .
13 FORMAT(5Xs5HALFA=9F5e295X93HXI=91PE9¢293Xs6HDELTA=sOPFT7e4y5X,
o1 SHEETA=»1PE942923X9sAb6s14H POLARIZATION))
14 FORMAT(19HOCALCULATED WITH H=91PEBel9s5Hy DT=91PEBels10Hy EPSILON=»
1 1PEBels6Hy DEV=41PEBels9Hy CINSIG=41PEB.1)
15 FORMAT(100Xs TH(RUN NRsI&4s1H))
DIMENSION Z(5)sV(5)9P(5)sG(5)9DUML(3750)sDUM2(2)
COMMON DUM1sALFAsH, DUMZ’NC’DUM3OPC’PE'ZIV PyGsBETAYDELTASDT
1 EPSsDEVICINSIGDTI :
NRS=0 -
READ CARDS CONTAINING SYSTEM AND OPERATION PARAMETERS
20 READ INPUT TAPE 291 sNCe(Z(I)sI=195)e{VII)el=led)e(P(l)yl=1ly4)
30 IF(NC)31431,21
31 IF(NRS)33933,32
32 CALL REWUNL(8)
"33 CALL EXIT
21 READ INPUT TAPE 2+s2sALFAsX]sPE
READ INPUT TAPE 2939(G(I)91=1s4)sBETASDELTA
READ INPUT TAPE 294sHsDTIEPSsDEVICINSIG
READ INPUT TAPE 2954M1sM2,M3yM4 9sNRyMP yMK sMNT TML 9M7 4 FDAMP
SET UP BINARY TAPE FOR RECORDING OUTPUT IF NR NOT ©
40 IF(NR)22y22+41
41 IF(NRS)42+42422
42 CALL REWIND(8)
NRM=NR-1
NRS=NRS+NR
CALL POSITT(B8yNRM»0)
CALL ETTEST(8,INDIC)
IFCINDICYI4L3,22943
43 NR=0
ESTABLISH PARAMETERS FOR. I=NC
22 VINC)=0,. "
PINC)=1.
G(NC)=1,
CALCULATE XI
PC=XI/BETA
PRINT OUT PARAMETERS DESCRIBING CASE
70 IF(ABSF(PE-14)=-0e001)719724+72
71 TYPE=6H(TAFEL
GC TO 23
72 TYPE=6H{(REDOX
23 CALL STCEPITDTM, 1)
25 WRITE OQUTPUT TAPE 3411,4NC
50 IFi{NR)26+26951
51 WRITE OUTPUT TAPE 3915;NR
WRITE TAPE 84sNR :
WRITE TAPE 8$NC'(Z(I)913 LoNC)a(VII)eI=1aeNC)s(P(I)el=1sNC)o»
1 (GUI)YsI=1sNC)sALFAWXIsPESDELTABETA

26 DO 27 I=1sNC



ARITE OUTPUT TAPE 3451291 9Z(1)s1 sV (1)1 sPlI)elsGLI])
WRITE OUTPUT TAPE 3913sALFAsXI»DELTALBETA,TYPE
WRITE OUTPUT TAPE 34149HsDTsEPSsDEVSCINSIG

SUBROUTINE ODE FOR COMPUTATION OF CASE
CALL ODE(M1yM2yMIyM4sNRIMP sMKyMNI] s TML M7 +FDAMP )

END OF FILE ON BINARY TAPE IF USED
[F{NR)20+20+61

CALL EOF(8)

GO TO 20

END
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130 SUBROUTINE ODE(MIsM23sM34M4 MNy,MP MK sMNT 3 TML sM74FDAMP)

SUBROUTINE FOR ANALYSIS OF ONE DIMENSIONAL POROUS ELECTRODE SYSTEM
12 JUL 632 - E A GRENS
CTE - ALL SECTIONS WITH STATEMENT NRS IN M// SERIES CONCERM FIXED FPHIC(I1)
CALCULATION OPTION

101 FORMAT(9HOFOR TAU=31PE1Qe396H AT Neyl4,6Hs TEL=9yOPF64296Hy ERR=,
11PE10e3»7Hy DAMPa;0PF&+2y52My AND THE VALUES OF J FOR Y FROM 0 1O
21 (BY 0.1) ARE)

102 FORMAT(10Xs1P11E10.3)

103 FORMAT(6HOAFTERsI5415H ITERATIONS ANDsF6e2s44H MINUTES INITIAL POT
1IENTIAL HAD NOT CONVERGED)

104 FORMAT(46HOTHE STEADY STATE CONDITION OF THE SYSTEM IS -)

105 FORMAT(9Xs26H(THE CALCULATION REQUIRED »F5.2912H MINUTES ANDsI4,
-112H ITERATIONS)) .

106 FORMATI(8HOAT TAU=,1PE10e3933H THE CONDITION OF THE SYSTEM IS —-)

107 FORMAT(B8HOAT TAU=,1PE10e3s4Hy N=,164,67Hy CALCULATIONS WERE TERMINA
1TED AT VALUES BELOW. TOTAL ELAPSED TIME=90PF6.23s8Hs ERROR=,
21PE1043)

C8 FORMAT{22HOFOR TAU GREATER THAN +1PE10e3s43Hy THE SYSTEM IS ESSENT

1IALLY AT STEADY STATE) _

109 FORMAT(1HOs3Xs1HY 312X s1HJU s 14Xs3HPHI 913X sA2+14XsA2314XsA2s14X,
1A2914X9A2)

110 FORMATI(1XsF543y1P7E1S44)

111 FORMATI(S54HOLIMITING CURRENT 15 RIACHED WITH RESPECT TO CO””O“L“
112)

DIMENSION Z(S5)sVIS)sPUS ) 9GS TS sIL{51sC{250+5)9CSS({25095 ),
PHIS(250)sPHI(250)9PHISS(250) s TCS(250)sTCL250)1sTCP(250)
TCSS(250)sFK{25054)sFKP(250)sDP(250)sDP2(250)DC(250) s
DC2(250)»QMI(250) 9sQ(250)9QP(250)sR(250)+A1250)sB(250)1U(250)
FLK(S)9PHISO(25C)9TCO(25O)9OC(5)9TD(5)’CH(5)!PHIIN(250)9
ACI2504 ) sBO(25004) +PHUSI250) s CNCO (280 ,PHILT(250)

COMMON AsBsTCS»TCPyQMyQ QP sRIPHISHPHI ,C,,\L‘:,\,; s LE 2L aNCyPMNYyPCHPE,

1 Z2sVePsGyBETASDELTASDT»EPS,DEVICINSIGHDT I s INCoLFMHyLFPHLIsWF,
2 IRyIPINIM79sCIGNCR sXKTYPE sKEY +sKFLDsKINITHPHIFAC

UP OVERPCTENTIAL EXPRESSION OPTI Oh

7T IFIABSF{PE~14)1—=0,00111185119y!

3 Kl(PL—;

GO TO 120
119 KTYPE=2
120 CALL CLOCKT(TIS)
ESTABLISH PRINTOUT COLUMN HEADINGS

Z 0Oy

(S I S VR N S

CH{1l)y=2HC1
CH{2)=2HC2
CH(3)=2HCZ
CH{ &) =2HC4

CH{5)=2HCE
INITIALIZE INTERNAL PARAMETERS
PN=0s
NWCM=NC-
124 DO 125 I=1,NCM
125 PN=PN+V(I)*Z(])

S=C.

126 DO 127 1I=1,sNC

127 S=3+200)»Z2()y»PLIV*G(])
CAPPA=C/{PN*BETA)
T4=1121/CAPPA
T1O0=PN*BETA*H

128 DO 129 I=1,NC
TC(I =2 H*H/P(I)



130
121
132

133
125
136
W37

138
140

141

142
143

144

GO TO (1335131)+XTYPE
IXP=XFIXF(LOGF(CINSIG)/446)
CIGNCR=10e#*IXP

GO TO 135

CIGNOR=CINSIG
IF(FDAMP—-0401)1369137+137
DAMAX=1,

GO T0O 138

DAMAX=FDAMP
DAMCK=DAMAX+04,01
L=XFIXF((le+DELTAY/H)+1
LF=XFIXF(DELTA/H)+1
LM=L-1

LFM=LF~-1

LFP=LF+1
LI=LF-(LFM/MP)#MP
INC=XFIXF{Qel/H)

IR=0

iP=0

K=0

DO 143 I=1,2
IF(V(IN)I14)le1435142
IP=1#(KTYPE~-1)

GO TO 143

IR=1

CONTINUE
IF(IP*IP-IR*#IP)39G 41444144
PHIFAC=1,
IFINC-2)148,148,145

146

CHARACTERIZE SYSTEM AS TO PRESENCE OF EXCESS INERT ELECTROLYTE

145

146
147

148

DO 147 I=1sNC
IF(V(1I))14T74+1479146
IF(G(I)-0e2511475148,148
CONTINUE

KFLD=1

GO TO'150

KFLD=2

SET UP CALCULATION PROCEDURE OPTIONS

150
151
152

153

GO TO (151,153),KFLD
IF(M7-2)152+1535153
KMP =2

GO TO 156

KMP=1

ESTABLISH INITIAL DAMPING

GO TO (154,4,156)sKFLD

154 GO TO (155+156)sKTYPE

155

156

DAMS=1.
GO T0O 600
DAMS=0.9**6

BINARY TAMLZ OUTPUT (OPTIONAL

600
601

IF(MN)Y157+1574+601
INT=XFIXF{0e01l/H)
LIT=LF—(LFM/INT)*INT
YI=FLOATF(LIT-1)#H-DELTA
WRITE TAPE 8sY!

BYPASS STEADY STATE CALCULATION IF M1=3
157 GO TO (160s1609158) Ml

158

KINIT=1
CALL PHIFE
D0 159 J=1lsi



159 PHISS(J)=1e2%PHI(J)
GU TO 200

SET UP OSTEZADY STATE CALCULATICN

160 DAMP=DAMS

161 N=1

MC=0

KP=1

CRR=0

CALL CLOCKT(TI)
KEY=2

KINIT=
TAU=9,999E+33
CALL PHIF

00 163 Jv1lsbL
D0 162 I=1+NCM
CiJds1)=GI{I)
TK{Js1)=00e
FKP(J)Y=0e
PHIS{J)=PHI(J)=-PHI(
PHISO(J)=PHIS(J)
DO 164 1=1sNC
FL(I)=O.

DO 165 J=LF,L
165 TC(Ji=l.

164

CONDUCT PROCEDURE FOR A TIME STEP WITH STEADY STATE SET UP

GO TO 400

PRINT
170
171

GO TO (171,180)sM1
GO TO (610172} sM3
172
BINARY TAPE OUTPUT
610 IF(MN)Y1T73,173,511
611 WRITE TAPE 8sTAU
DO 612 JU=LITsLysINT
WRITE 7TAPZ 8.TC(U)
WRITE OUTPUT TAPE
DC 177 J-LIsLsMP
oC 7 Th44178)9M3

C
174 5O 17¢ ’=1-?C
(
v
i
A

6lz2
173

FiC
Cids
CONTINU
IF(TC(J

TC(u)-O.

,,,,F‘ ,.H
ad =~ -~
W Cr ~J ¢ U

CUTPUT TAPE 2

WRITE
RETURN
SAVL STEACY

100 DO 182 J=lsl
DO 181 I=1sNC
CSS(Jsl)=ClJs])
TCSS(U)y=TC(I)
PHISS(J)=PHI{J)
NS=N
TELS=TEL
BINARY TAPE OUTPUT

615 IF(MN)200+200+616

616 WRITE TAPE 8sTAU

nNA 217 tee! TT .1 _ITNT

TATE RESULTS

181

1e2

1)

V=P LCATF(J-1)*H-DELTA
s110)» Y9TC(J):PHI(J))(C(J;I),I 1l

1
A

A

1
R}

WRITE OUTPUT TAPE 3,104

2 PHICU Y s (CHls L

3,109, (CH{IL)» 1~

(OPTIONAL)

STEADY STATE RESULTS FOR STEADY STATE. CALC ONLY

WRITE OUTPUT TAPE 3,105,TELSN
(OPTIONAL

JoI=1eNC)
14NC)

CIGNCR)Y 17551754176

~10e*CIGNOR)17745177+178

TRANSIENT CALCULATIONS

Q)

147



202

CONDUC
2108

224
225
226
227
704
228

230

WRITE TAPE By TCUU) yPHI(J) s (ClIs1)sI=1,NC)
CALCULATION AT TAU =0

=l

MC=0

KP=1

KLY=]

RiniT=2

CRP=0e«

DAMP=DAMS

CALL CLOCKT(TID)

CALL PHIFE

CO 202 J=1,L

PHIS(JY=PHI(U)-PHI(1)

DO 202 I=1,NC

ClJdyI)=G(1)

WF=0ae5

T CALCULATION AT TAuU=0

CALL TFCIPHI1sNCs1)

0O 211 J=2,L

AGM(Jy=1,

GP{J)=1.

C(J)=—2.—T4*PC*PN*FLOATF(KTYPE*l)4

AT =TE* (B ~-PCHPN*PHISIJ)*FLOATF (KTYPE=-1))

CALL TDIAG(1sL s04sPHUS)
IFIN-112125212,214

OC 213 U=1l,L

FiHIS(J)Y=PHUS )

GO TO 700

00 215 J=1,L

PHIS(J)=PHISO(J)*(1.~DAMP ) +PHUS(J) #DAMP

GO TO (217,701)sKP

CALL TFC(PHI1sNCy4)

IFIM=-2)230+230,702 .
IF(ABSF{TCP(LF)=TC(LF))-CIGNOR 222,222,703
IF((TCP(LF)-TC(LF))*(TC(LF)“TCO(LF)))224;2229222
CALL TFC(PHI1yWNCy2)

IFINC)483,483,218

IFIN=-2)230+230,219
[F{ABSF(PHI1=-PHI(1))~EPS/10e)2225222+220
IFC(PHILI-PHI(1))#(PHI(1)~PHI10))22442219221
IFC(PHI1=PHI(1))*(PHI10O-PHI102))224+222+222

DAMP=DAMP/0.9

IF(DAMP-1401)226492235223

DAMP=1,

GO TO 226

IF(DAMP~-0e111226+22545225

DAMP=049%DAMP

DO 227 J=1,L

PHIS(J)=PHISO(J)*(1+~DAMP)+PHUS(J) *DAMP

GO TO (2284230) sKP

CALL TFC(PHI1,NC,2)

IF{NC1483+483,230

PHI102=PHI10

PHI1O=PHI(1)

SUM=0,

5 GO TO (232,706)sKP

CALL TFCIPHI1sNCs4)
TCO(LF)=TC(LF)
TCILTy=TCP(LFE)

143



232

233
234
235

710
711
712

713
714

236
237
238
240
241
242
243
715
716
245

250
252

253

D0 233 U=1,HL
SUM= SUV+ABSF((PHI(J)-PHIS(J’)/PHIl =1le)

PHI(J)=PHIS(J)+PHI1
PHISO(J)=PHIS(J)
ERP=H*SUM/DAMP

CALL CLOCKT(TN)
TCL=TN~-TI

GO TO (2369711)sKP
IF(0410#EPS-ERP)712,713,713
M=M+1

GO TO 240

CALL TFCIPHI1sNCy3)

DO 714 J=LF,L

TCS(J)=TCP(J)

GO TO 742
IF(TEL-0e470)2374+237,238
IF(0e5*EPS~ERP 24092509250

IF {5+ #EPS~ERP)240+250+250

GO TO (2419242+,243)4M4
IF(TEL-1.00)2439243,245

IF{N ~MNI-2%(KP~1)%MNI 243,245,245
N=N+1

IFIN =MNI)210+716+210
IF{M7-1)210+783,210

WRITE OQUTPUT TAPE 3,103,N,TEL
RETURN

CALL TFC(PHI1sNCy3)

DO 253 J=1,L

PHIIN{(J)=PHI (J)

TC(J)Yy=TCP(J)

SET UP PRINT FOR TAU=0

260

K=0

TAU=0.
TAUO=0.
TCK=TC(LF)
FORFAC=0.1

DETERMINE AND RECORD OVERPOTENTIAL TREND

261

262
PRINT
300

IF(PHIIN(LF)—PHISS(LF))2619262,262
TND=+1,

GC 70 300

TND=-1,

TIME STEP RESULTS

WRITE OUTPUT TAPE 3,106sTAU

BINARY TAPE OUTPUT (OPTIONAL)

620
621

622
301
302
303
304
305

306
307

IF(MN)301+3014621

WRITE TAPE 8,TAU

DO 622 J=LITsLsINT

WRITE TAPE 8sTC(J)sPHIIJ) s (ClJsI)sI=14NC)
GO TO (3039302) M3

WRITE OUTPUT TAPE 3,1054TELsN

WRITE OQUTPUT TAPE 34109 (CH(I)sI=1sNC)
DO 311 J=LI,sLsMP

DO 304 I=14NC

OCiI)=C(Jds 1

GO TO (305+309)9M3

DO 307 I=14NC

IF{C(JsI)/G(I)~CIGNOR) 30643065307
0C(1)=0.

CONTINUE

IF(TC(J)-10.*CIGNOR) 308308309
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308

309
310
311

TCOPU=0.

GG TO 310

TCOPJ=TC (V)

Y=FLOATF (J-1)%H-DELTA

WRITE OQUTPUT TAPE 39110sYsTCOPJsPHI(J) »(OCLI)eI=19NCY

INITIALIZE TIME STEP CALCULATIONS

320

321

KEY=1

KINIT=1

Kak+]l

N=1

MC=0

KP=1

ERR=0,

DAMP=DAMS

CALL CLOCKT(TI)
IFI{K=-1)322+322+330

CALCULATE TIME STEP TERMS FOR INITIAL TIME STEP

322

323

325

326
327

S=H*#H/DT

DO 323 I=1yNC

FL(I)=S/P(1])

FLK{I)=FL(])

WF=0e5

CALL TFC{PHI1sNCs1l)

DO 327 J=2sL

DO 325 I=14NCM
FRKEJoI1=(T(I)=Z(1)*T4*G(1))*B(J)=2e%FL(I)*G(])
GO TO (3269327)9sKMP
FKP(J)==T4#B(J)=2¢*¥FLINC)/ZINC)
CONTINUE

GO TO 350

CALCULATE TIME STEP TERMS FOR SUSEQUENT TIME STEPS

330
331

352

353

334

335

336
336

339
340

341
342
343

344
345

CALL STEP(TDTMs2)

DO 234 JU=2,L

DO 234 [=1,.NCM

IF(C(Us 1) /GUI)~CINSIG)334,4334,332

S==C(JsI)/FK(Js1])

TOT=TDII)H(S+2.*#FL(1)%S*S)

IF(TDTM~TDT)334+334,333

TDTM=TDT

CONTINUE

IF(ABSF(TC(LF)I/TCK=10)~-042)3354335,336

CALL STEP(TDTM3)

GO TO 338

CALL STEP(TDTMy4)

S=H*¥H/DT

DO 339 I=1sNC

FLK{I)=FL(])

FL(I)=S/PL(])

DO 349 JU=2,L

DO 345 [=]14NCM

IF(C(Js 1) /GUI)=CINSIG)341+341434¢4

IFIC{Js 1)1 -1e0E=35)342+342,343

FKUJol)==2e#C(Js I )*FL (1)

GO TO 345

FKEJ21)==2e*FLILI)*C(Js I IHEXPF(FK(J2 1)/ (CUJsI)*FL(I))+
2e*FLK(I)/FL(I))

GO TO 345

FKUOJoI)z=FKUJol)=24#(FL(1)+FLK(I))*C(Js])

CONTINUE

GO TO (3464+349) KMP
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340
349

FKP(J)==FKP(J)=2¢*(FLINC)+FLKINC))I*C(JoNC)/Z(NC)
CONTINUE

ESTABLISH STARTING ESTIMATES OF PHI FOR TIME STEP

350

351
355

356

357
358

359

TAU=TAU+DT
TCK=TC(LF)

DO 351 J=1l,L

PHILT(J)=PHI(J)

FORS=FORFAC*FLOATF (KFLD~1)

DO 359 J=1,ylL

IF(J=LF)35%69356935%7

FORM=FORS

GO TO 358
FORM=FORS*(TC(J)/TCILF)+FLOATF(K=1))/FLOATF(K)
PHI(J)=PHILT(J)*(1e-FORM)+PHISS(J) *FORM
PHIS(J)=PHI(J)=PHI(1)

PHISO(J)=PHIS(J)

CONDUCT SOLUTION OF EQUATION SYSTEM FOR TIME STEP

START
400

401

ITERATION WITH PHI VALUES FROM LAST ITERATION
DO 401 JU=2sLM

DP{J)=PHIS(J+1)=-PHIS(J-1)
DP2(J)=PHIS(J+1)+PHIS(J-1)-2e*PHIS(J)
DP2(L)=24*(PHISILM)-PHIS(L))

FIND NEW VALUES FOR C{JsI) FOR I NOT NC

402

403
404
405
406

407
408
409
410

411

412
413
414

415

417

418

DO 429 I=14NCM
IF(ABSF(T(I))=1eE=20)410+410+402
WF=2(1le+Z(I)HDP(LF)/44)/2
CALL TFC(PHI1lslIs1l)

GO TO (403,405)sKFLD

GO TO (4049410) +sKMP
IFIN=-1)410+408+406
IF{N=-MNI/2)410+408+406
DO 407 J=2,L
AlJ)=(A{J)I+AD(Je]) ) /20
BlJ)=(B({J)+BOIJIsI) /2
AO(JsI)=AL)

BO(Js11=8B(J)

GO T0 410

DO 409 J=2,yL

AQ(Js1)=ALY)

BO(JsI)=B(J)

DO 411 U=2,4LM

S= Z(1}*DP(J) /4.
QM(J)=1e-5

QP{J)=1e+S

S=2#FL(])+2
IF(IR¥IP)42194219412
IF(I-IR)413,4145413
IF(I-1P)621s414s421

DO 415 J=2,L
Q(JI=Z(1I*DP2(J) =T (1) *A(J)~-S
R(J)=FK(Js 1)
B(J)==T(1)*B(J)
IF{I-IRY41T94169417

CALL PDIAG(1sLsG(IR)9Uy1)
GO TO 429

CALL PDIAG(1sLsGIIP)»U,s2)
DO 420 J=1,sL
IFLU(J))41894189419
C{J»IR)I=0.

GO TO 420



419
420
421
422
423
424
425

428
429

CtJsIRI=UIY)

CONTINUE

CALL PDIAG(I;L.G(IP):U:3)
GO TO 423

DO 422 u=2,L
Q(J)=Z(I)*DP2(J)‘T(I)*A(J)-S
R(J)=FK(J;I)+T(I)*5(J)

CALL TDIAG(I’LDG(I)’U)

DO 428 Ju=1,L

IFGULUN 42444244425
C(J’I)=Oc

GO TO 428

C(JQI)=U(J)

CONTINUE '
CONTINUE

FIND C(J»NC) VALUES BY ELECTRONEUTRALITY

430

431

432
433
440

FIND NEW VALUES OF PHI(J)

441

442
443

444
445

446
447

448

450
451
452
453
454

455

DO 433 J=1,L
SUM=0,

DO 431 I=1,NCM
SUM=SUM+C(J,1)#Z (1)
CNCO(JI=C(J,NC)
C(J»NC)==SUM/Z (NC)
IF(C(JsNC)1432,432,433
C{JyNCI=0.

CONT INUE

GO TO (4605441) 4KMP

DO 443 =2,

DC2(U)r=0.

DC(J)=0.

DC 442 1=1,NC '
DCZ(J)zDCZ(J)+Z(I)*Z(I)*P(I)*C(Jal)
DC(J)=DC(J)+Z(I)*P(I)*(C(Jnl)—C(J‘1$I))
CONTINUE

GO T0O (444 43447) 4K P

CALL TECIPHI1HZNC,2)

XF(NC)483’4839445

DO 446 U=1,L

PHI(J)=PHII+PHI$(J)

CALL TEFC(PHI1sNCy3)

DC 448 U=LF,L

TCS(J)=TCP(J)

CONTINUE

PHUS(1)=0,

CALL INTEG{HLF oL yCUR)
IF(LF-2)4529450945O

00 451 JU=2,LF
PHUS(J)=PHUS(J—1)—(TlO*CUR+DC(J))/DCZ(J)
DO 455 JU=LFpP,L
IF((L-J)-((L—J)/Z)*Z)#539453y454

CALL INTEG(H»J’L)CUR)

GO TQ 455

CALL INTEG(H»JsLM,CUR)

CUR=CUR+H#TCS (L)
PHU5(J)=PHUS(J-l)*(TlO*CUR+DC(J))/DCZ(J)
GO 70 500

FIND NEW VALUES OF PHI(J) BY BASIC PROCEDURE

460

LA ]

DO 464 U=2,LM
IF(CIJINC) 146254614462
CC(uy=0,

BY ALTERNATE PROCEDURE

152



CC2(J)=0. -
GO TO 463 153
462 DC(JII=(CLI+1sNCI=ClI-14NC)}I/CLJI»NC)
 DC2UJ)=(CUI+1oNCI+CII-14NC)I/C(JIsNCI -2,
463 S=DC(J)/4e
QM(J1=1e-5
464 QGP(J)1=1e+S
xr(C(L,NC))aeb,aes.asé
465 DC2(L)=0,
GO TO 467
466 DC2UL)=24*(CILMINC)I/CILINC)~14)
467 S=2.%FL(NC)/Z(NC)
DO 469 J=2,L
Q(J)r==2.
R(J)==DC2(J)/Z(NC)
IF(C(JINC) 14689469468
468 R(J)I=RIJV+FKP(J)/C(JINC)+S
469 CONTINUE
CALL TDIAG(1lsLs0esPHUS)
RESTART ITERATION PROCEDURE WITH NEW ESTIMATES IF PHI(J) VALUES DIVERGE
500 GO TO (501+520) sKEY
501 DO 502 J=1l,L
IF(ABSF(PHUS(J))=T704)5029502+525
502 PHIS(J)=PHUS(J)
CALL TFC(PHI1yNCs2)
IFINC)483+483,503
503 LIMIT=0
DO 512 J=1sL
PHI(J)=PHI1+PHIS(J)
PDS=PHI(J)=-PHISS(J)
IF({TND#*PDS)505+5059 504
504 LIMIT=+1
XSS5=ABSF(PDS/PHISS(J))
FSS=1e/(2e+10e%#XSS)
PHI(J)=PHISS(J)+FSS#PDS
GO TO 512
505 IF(LIMIT)S507+507+506
506 PHI(J)=PHISS(J)+0e5%PDS
507 PDI=PHIIN(J)~PHI(J)
) IF(TND*PDI)1509+,509+508
508 LIMIT=-1
XIN=ABSF(PDI/PHIIN(J))
FIN=1e/(2¢+10*XIN)
PHI(J)=PHIIN(J)-FIN*PDI
GO TO 512
509 IF(LIMIT)510,512+512
510 PHI(J)=PHIIN(J)=-0e5%PDI
512 PHUS(J)=PHI(J)=PHI(1)
INCREASE OR DECREASE DAMPING ACCORDING TO BEHAVIOR OF TC(J)
520 IF(N=1)5219521+523
521 DO 522 J=1,L
522 PHIS(J)=PHUS(J)
GO TO 720
523 DO 524 J=1,L
524 PHIS(J)=PHISO(J)*(1e~DAMP)+PHUS(J) *DAMP
720 GO TO (530,721)sKP
721 . CALL TFC(PHI1sNCs4)
722 IF(M-2)550+550+532
525 GO TO (526497)sKEY
526 GO TO (5024527) sKFLD



527

530

531
532

725
726
533
534
535
536
537
540

541

542
543
545
546
727
547

550

551
552

CHECK
560
730
731

732
733

734
735
736
737
738
739
740

741
742

N=1

ERR=0.

DAMP=(DAMP+DAMS) /2,
FORFAC=FORFAC*(1,~FORFAC)=0e01
IF(FORFAC)399,3554355

CALL TFC(PHI1sNC»2)
IFINC)4839483,4531
IFI{N=-2)550+550+532

CALL TFCI(PHIL1sNCr &)

DO 537 J=LFsLsINC

GO TO (5334+726)sKP
IF((L-LF)/34+LF=J)1537+537+533
IF(DAMP~0¢53153545344+534
IF(ABSF(TCP(J)=TC(J))~2*CIGNOR)537+537+536
IF(ABSF(TCP(J)=TC(J))=20e*CIGNOR)53795379536
IFC(TCPIII=TCLIII*(TC(JI)=TCO(J)))542+537+537
CONTINUE

DAMP=DAMP/0.9

IF (DAMP-DAMCK) 54545419541
DAMP=0,9#DAMP

GO TO 550
IF(DAMP-0e01)545+543+543
DAMP =0+ 9%DAMP

DO 546 J=1,L
PHIS(J)=PHISO(J)*(1+=DAMP)+PHUS(J) *DAMP
GO TO (547,550)sKP

CALL TFC(PHI1sNC»y2)
IFINC)483+483,4550

DO 551 J=1,L

PRI(J)=PHIS(J)+PHI1
PHISO(J)=PHIS(J)

CALL TFC(PHI1sNCy3)

DO 552 J=LFsLsINC

TCO(U)Y=TC(I)

CALL CLOCKT(TN)

TEL=TN-TIS

FOR CONVERGENCE OF ITERATIONS FOR THE TIME STEP
IF(N~11470+470+730

GO TO (5619731)9KP

SUM=0.

ERMAX=0,

DO 735 J=LFyL

GO TO (733,732)sKFLD
TCP(J)=(TCP({JI+TC(J)) /2
ERR=ABSF(TCP(J)=~TC(J))
SUM=SUM+ERR
IF(ERR-ERMAX)735,735+734
ERMAX=ERR

TC(J)Yy=TCP(J)

GO TO (7374,736)sKFLD

ERR=ERR/10.

ERMAX=ERMAX/10,

ERR=H*SUM
IF(EPS-ERR/DAMP ) 73847395739

M=M+1 :

GO TO 472 '
IF(10*EPS~ERMAX/DAMP ) 73837409740
DO 741 J=LF,L '
TCS(J)=TCLI)

CALL INTEG(HsLFsLsCUR)
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743
744
745
146

747
748
750

751

752
753

754
760

761
770

771
561

562
563
564

570
571
572
573
574

575

576
577
578

580
581

582
583
585

GO TO (744,4743)9KINIT
IF(ABSF(CUR=1¢)-0e1*EPS) 77097459745

IF(ABSF(CUR=16)1-EPS)TT09 7459745
IF(CUR-1e) 74697709747

INDP=~1

GO TO 748

INDP=+1
IF(IND+INDP)7509760+750
IND=INDP -~

PHIlL=PHLL

IF(CIND) 75197514752
PHI1=PHI1+DELPHI
GO TO 753
PHI1=PHI1-DELPHI
CURL=CUR

M=1

DAMP=1.

MC=MC+1

GO TO (4009210) sKINIT
PHI1=PHI1lL+(1le~CURL)*(PHI1-PHI1L )/ (CUR~-CURL)
DELPHI=0e¢ 1%#DELPHI P

IND=0 - ’

MC=MC+1

M=1

DAMP=1, '

GO TO (400+210)sKINIT

M=0 e

KP=1

DAMP=1,.

GO TO (5859252)sKINIT

ERMAX=0.

SUM=0.

DO 578 J=LF,L

GO TO (564+562)sKFLD
IF(N-MN1/2)564+563+9563
TCPUJ)=(TCP(J)I+TC(J)) /24
ERR=ABSF(TCP(JI-TC(J))

SUM=SUM+ERR

e

DIV=MAX1F(ABSF(TCP(J))9sABSF(TC(J)))

GO TO (571+573)sKTYPE
IF(ABSF(TCP(J))=10+*#CIGNOR)5729¢572+574
IF(ABSF(TC(J))~100*CIGNOR)57B'5789574
DIV=MAX1F(1lesDIV)

ERR=ERR/DIV
IF(TCP(J)+CIGNOR)S575+95769576

ERMAX=1,

GO TO 578

IF(ERR-ERMAX)57845789577

ERMAX=ERR

TC(J)=TCP(J)

ERR=H*SUM

EPP=EPS

GO TO (582+580)sKTYPE
IF(N-MNI)582+582+581

ERMAX=ERMAX/10.
REV=1e+9¢*MINOF ( 2% (N-MN1) sMNI ) /FLOATF (MNI )
EPP=REV*EPS

IF(EPP-ERR/DAMP) 47295834583
IF(EPP-ERMAX/DAMP 47295854585
IF(LFM-1)596+586+586
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586 DO 587 J=1sLFM 156
587 TC(J)=0
DO 590 I=1sNCM
IF{V(i11590+590+588
588 DO 589 J=LFsLFP
IF(C(JryI)/GLI)-CINSIG)I591+591,589
589 CONTINUE
590 CONTINUE
GO TO 596
591 GO TO (59295934592) sM1
592 WRITE OUTPUT TAPE 3,111,1
RETURN
593 GO TO (5945595) 4KEY
594 WRITE OUTPUT TAPE 3+106»TAU
595 WRITE OUTPUT TAPE 3,111l
GO TO (399+180)sKEY
CONVERGENCE OF ITERATION PROCEDURE - GO TO CHECK FOR STEADY STATE
596 GO TO (360s170)sKEY
470 DO 471 J=LF,slL
471 TC(J)=TCP(J)
472 GO TO (4809473)sM2
PRINT ITERATION SUMMARY (OPTIONAL)
473 WRITE OUTPUT TAPE 3,101sTAUSNSTELIERR DV
WRITE OUTPUT TAPE 3451029 (TC(J)eJdsLFelsilNC)
CHECK FOR EXCEEDING PROGRAM TIME LIMIT
480 GO TO (481,482,485) M4
481 IF(TEL-TML)485,4854483 ‘
482 IF(N-MNI-2%(KP-1)%MNI)485,483,483
483 WRITE OUTPUT TAPE 3,107sTAUsN,sTEL s ERMAX
WRITE OUTPUT TAPE 34+109s(CH(I)yI= l,NC)
DO 484 J=LIsLsMP
Y=FLOATF(J-1)#H~-DELTA
TERMINATE CALCULATIONS FOR EXCESSIVE ELAPSED TIME (OR ITERATIONS)
484 WRITE OUTPUT TAPE 341109V sTCIU)sPHI(J) 9 (C(JsI)rI=1sNC)
GO TO (3709399)sKEY
COMMENCE ANOTHER ITERATION
485 N=N+1
775 GO TO (776+400) sKP
776 GO TO (780+490) sKEY
CHECK FOR VERY HIGH PHI ESTIMATES = RESTART WITH LOWER ESTIMATE IF HIGH
490 IF(N-MNI/3)491,493,491
491 IF(N-MNI)4925499+492
492 IF(N=(3%¥MNI)/2)400+498,400
493 LFH=LF+(L=-LF)/2
DO 495 J=LFysLFHs INC
IF(TC(J)+1e0)4969494494
494 IF(TC(J)+0e1)1497+4959495
495 CONTINUE
GO TO 780
496 PHIFAC=0.3%PHIFAC
GO TO 161
497 PHIFAC=0e9#PHIFAC
GO TO 161
498 IF(TC(LF)-TCR)497+780+780
499 TCR=TC(LF)
780 IF(N-MNI)4005s781+400
781 IF(MC-1)782,4009400
782 IF(M7-1)783,7845783
783 IF(M7-3)400,7845400
784 TND=0O



785
786

787

788
789

790
791

CHECK
360

361
362

363
364

365
366

MC=1

M=]

Kp=2

PHI1=PHI(1)
IF(ABSF(PHI1)~1)7859785+786
IF(ABSF(PHI1)=~0e¢1)788+788,787
DELPHI=1.

GO TO 789

DELPHI=0.1

GO TO 789

DELPHI=0.01

DELPHI=DELPHI*PN/ABSF (PN)

GO TO (7909210)sKINIT

GO TO (791+400)sKEY

DELPHI=041*DELPHI

GO 70 400

FOR APPROACH TO STEADY STATE

CALL CLOCKT(TN)

TEL=TN-T]

DO 366 J=LFsLsINC
IF(ABSF(TCSS(J)1-10*CIGNOR)3619361+362
IF(ABSF(TC(J))=10e*CIGNOR) 36693669380
FACTOR=LOGF (TCSS(J))
IF(FACTOR)363,363,364
ADEV=(1+-FACTOR+FACTOR*FACTOR/504) *DEV
GO TO 365

ADEV=DEV/FACTOR
IF(ABSF(TC(J)/TCSS(J)=1e)-ADEV)366+366,380
CONTINUE

STEADY STATE REACHED - PRINT STEADY SfATE RESULTS

370
630
631

371
372
373

374

375
376

377
378
379

CHECK
380
381
390

START
391
392
393

WRITE OUTPUT TAPE 3,108,TAU

WRITE OUTPUT TAPE 3,104
IF(MN)371+3714+631

TAU=z~1,

WRITE TAPE 8sTAU

GO TO (3734372)sM3

WRITE QUTPUT TAPE 341059TELSsNS
WRITE OUTPUT TAPE 3109 (CH(I)sI=1sNC)
DO 379 J=LIsLsMP

GO TO (374,378)sM3

DO 376 I=1yNC
IF(CSS(Js1)/G(I)-CIGNOR)3759375+376
CS8S5(Js1)=0,

CONTINUE
IF(TCSS(J)=104*CIGNOR)377+377,378
TCSS(J)=0e

Y=FLOATF (J-1)*H-DELTA
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WRITE OUTPUT TAPE 35110sYsTCSS(J)sPHISS(J) s (CSSIJsl)sI=1,NC)

RETURN

FOR FAILURE TO REACH STEADY STATE AT REASONABLE TAU

IF(500%DTI-TAU)3819390+390
GO TO 483

GO TO (392,391)sM3

NEW TIME STEP

"IF(K=(K/MK)#*MK 130093005310

[F(TAU-TAUO-DTI*FLOATF(MK))310+393,393
TAUO=TAU
GO TO 300

RETURN TO MAIN PROGRAM FOR NEW CASE

199

RETURN



01 SUBROUTINE INTEG(HsJIsJF,QU)

SUBROUTINE FOR INTEGRATION BY SIMPSONS RULE =~ 16 OCT 62 -E A GRENS

DIMENSION U(250)+DUM(500)
COMMON DUM,U
02 SUM1=0.
SUM2=z0,
JIPuyl+]l
JIP2=J1+2
JFM=JF-1
JFM2=JF -2
04 DO 05 J=JIPsJFM,y2
05 SUM1=SUM1+U(J)
06 DO 07 J=JIP2sJFM2,2
07 SUM2=SUM2+U(J)
08 QU=(U(JI)I+U(JIF ) +4 e #SUML+2,#SUM2)*H/3 o
RETURN
END

01

1
02

03
04
05
06
08

09

SUBROUTINE TDIAG(JI sJFsUIsU)

158

SUBROUTINE FOR SOLUTION OF SPECIAL TRIDIAGONAL MATRICES

26 NOV 62 - E A GRENS

DIMENSION QM(ZSO)'0(250)’QP(250)oR(ZSO)vW(ZSOD

DUM(1000)
COMMON DUMyQMsQsQP 4R
JIP=JI+1
JFM=JF-]
JFQ=JF-JI
W(JI)=0,.
RS(JI)=U]
RO 05 J=JIPsJFM
S=Q(J)-QM(J) *W(J=1)
W(J)=QP(J)/S
RS(J)=(R(J)=QM(J)%RS(J=-1))/$
U(JF)=(R(JF)~2'*RS(JFM))/(Q(JF)-Z.*W(JFM))
DO 09 JP=1,JFQ
JQ=JF=-JP
U(JQ) =RS(JQ)=W(JQ)*U(JQ+1)
RETURN
END

*RS(250)5U(250)



01

02
03
10

11

12
20

21

22

24

25

30
31
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SUBROUTINE PDIAG(JIsJFsVIsUsMODE)

SUBROUTINE FOR SIMULTANEOUS SOLUTION OF TWO LINEARLY LINKED

TRIDIAGONAL MATRICES (2) 18 JUN 63 -~ E A GRENS

DIMENSION QM(250) sQMR(250) 9Q(250) sQR(250) QP (250) sQPR(250)8(250) »
BR{250)sR(250) sRR(250)sU(250) 9V (250)9A(250)sDUM(500)

COMMON AsBsDUM»QM»Q9QP R

JIP=JI+1

JFMa jF=]

JFQ=JF~JI

GO TO (10»20+30) 9MODE

UtJdIy=vli

Ul=vl]

DO 12 J=JIPsJF

QMR (J)=QM(J)

QR{J)I=Q(J)

QPR (J)=QP(J)

BR(JY=B(J)

RR(J)=R(J)

RETURN

vVidir=vi

QGPR(JI)=0.

QP(JI)=0.

BR(JI)=0e

B(JI)=0.

RR(JI)=UI

R(JI)=VI

QMR(JF)1=2.

QM{JF ) =2,

DO 22 J=JIPsJF

DA=14~BR(J~1)%#B(J=-1)

AR=QMR(J) /DA

ZR==AR¥*BR(J-1)

A=QM(J) /DA

Z=~A%*B(J=-1)

DENR=QR(J) ~AR*QPR(J~1)

DEN=Q(J)-A*QP(J-1)

QPR(J)Y=QPR(J)/DENR

QP(J)=QP(J)/DEN

BR(J)=(BR(J)=ZR*¥QP(J-1))/DENR

B(J)1=(B(J)-Z*QPR(J~1))/DEN

RR{J)=(RR{J)-AR¥RR(J~1)~-ZR*R(J~-1) ) /DENR

R{JI=(R(J)-A*R(J~1)=-2Z*RR(J-1})/DEN

QPR(JF)=0e

QP(JF)=0.

DO 25 K=1»JFQ

J=JF=-K+1

RHR=RR(J)=QPR(JI*U (J+1)

RH=R(J)=QP(J)*V(J+1)

DU=1e-B(J)*BR(J)

U(J)=(RHR=-RH*BR(J))/DU

V(J)=(RH-RHR#B(J)) /DU

RETURN

DO 31 J=J]lsJF

Utd)=viJ)

RETURN



01

1
02

‘10

14
15
16

20

30
31

32

40
41

42
43

44
50
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SUBROUTINE STEP(TDTMsMODE)

SUBROUTINE FOR CALCULATION OF INITIAL TIME STEP AND FOR TIME STEP

MODIFICATION (FORM 3) ~ 3 JUL 63 - E A GRENS

DIMENSION 2(5)9V{5)9sGI(5)sP{(5)sDUM(3750)9sDUM2(8)sDUM3(5)

COMMON DUMsDUMZ 92 sV P 9GIBETAIDELTAIDT 9EPSIDEVICINSIGIDTI sDUM3»
IRyIPyNsMT7sCIGNOR

GO TO (10920+30940)sMODE

IF(IR)16+16914

DT=G(IR)/(5.0%#V(IR)I*BETA)

IF(DTI-DT)16+50+50

DT=DTI :

GO TO 50

TDTM=10*DTI

GO TO 50

IF(TDTM=-DT 132432431

DT=DT40«5%(TDTM-DT)

GO TO 50

DT=TDTM

GO TO 50

IF(TDTM=DT)41941 42

DT=TDTM

GO TO 50

[IF(DT=DTI)43+43444

OT=DT

GO TO 50

DT=DT-05%(DT~DTI)

RETURN

END
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01 SUBROUTINE TFC(PHI1lsIsMODE)
SUBROUTINE FOR CALCULATION OF OVERPOTENTIAL-TRANSFER CURRENT
RELATIONSHIPS FOR REDOX POLARIZATION (FORM 4)
18 JUN 63 - E A GRENS
02 FORMAT (44HOOVERPOTENTIAL CALCNLATION DOES NOT CONVERGE)
DIMENSION Z(5)9V(5)sP(5)9G(D)eC{25095) 9sPHISIZ250)sPHI(250)
1 TCS(250)9TCP(250) vA(250) +8(2850)sCR(250)sCP(250)DUM(L100Q)
COMMON AsBsTCSesTCPsDUMIPHISosPHI s CrALFAIHILFsL sNCIPNIPCoPEIZr»V P 20>
1 BETAYDELTASDT sEPSIDEVICINSIGIDTI s INCILFMoLFPoLLI sWFIRsIPsNsMT)»
2 CIGNORSKTYPESKEYsKFLDIKINITSPHIFAC
03 GO TO (06»04)+KEY
06 GO TO (T70+s04)sKINIT
04 TF(N~-1)05905570
05 T2=ALFA#PN
T3=(ALFA=-14)*PN
GO TO (07s09)»KTYPE
07 DO 08 J=LFsL
08 CP(J)=0.
TP=0,
GO TO 85
09 IF({IP)80s80,82
80 DO 81 J=LFsL
81 CP(J)Y=PC
GO TO 85
82 TP=PC/G(IP)
85 1F(IR)8B6+86+88
86 DO 87 J=LF,L
87 CR{J)Y=PC
GO TO 70
88 TR=PC/G(IR)})
70 GO TO (77979+79s79) ¢+MODE
77 IF(IR*IP)Y71,71,78
78 IF(I-IP)105s10+99
79 IF(I-1)71+50+71
71 GO TO (74+99)+KTYPE
99 IFUIP)T49T4472
72 DO 73 JU=LF,L
75 CPUJ)Y=TP¥C(JyrIP)
T4 IFUIR)S0+90,75
75 DO 76 J=LFsL
7o CR{UJY=TR*#C(JsIR)
90 GO TO (10s20930940) +MODE
10 DO 11 U=1sLFM '
A(J)=0.
11 B(J)=0e
IF(I-1IR)15412,415
12 DO 14 J=LF,L
A(J)=TR*¥EXPF(T2#PHI (J))
IF(IP)134+13,91
91 B(J)=—TP*EXPF(T3*PHI(J)})
GO TO 14
13 B(J)==CP(J)YHEXPF(T3#PHI(J))
14 CONTINUE
A(LF)=WF*A(LF)
B(LFY=WF*B{LF)
RCTURN
15 [FrtI~IP)18,16,18
16 DO 17 J=LF,L
A(J)==TPREXPF(T3%#PHI (J))

T T LA AN ~A



92

93
17

18
19

20
21
22
23
24

25
26

27
29

60
61
62
63
64
65
66

67
68
69

30
32
33
34
35

40
41
50

BOJ)=TR*EXPF(T2*PHI(J))

GO 70 17
B(J)=CR{JIHEXPF(T2*PHI(J))
CONTINUE

A(LF)=WF*A(LF)

BILF)swF*B(LF)

RETURN

DO 19 J=LFslL

A(J)=0.
B(J)=CR(J)I*EXPF(T2*¥PHI(J))=CP(JI*EXPF (T3*PHI(J))
CONTINUE

BILF)=WF*B(LF)

RETURN

GO TO (21+25)+KTYPE

DO 22 J=LFslL
TCS(J)=CR{JIHEXPF(T2*PHIS(J))
CALL INTEG(HsLFsLsQT)
PHI1==LOGF(QT)/T2

RETURN '

DO 26 J=LFsL
TCS(J)=CRUJI*EXPF(T2*¥PHIS(J))
CALL INTEG(HsLFsL»QF)

DO 29 J=LFslL
TCS(JY=CPUJYHEXPF(T3#PHIS(J))
CALL INTEG(HsLFsLsQR)
IF({ABSF(ALFA-0+s5)-0e1)61961+63
PHI1=2+4*LOGF ((1e+SQRTF(1le+4¢%QF*QR) )/ (2%QF))/PN
IF(ABSF (ALFA-0e¢5)=1eE~06)50+50+64
PHI1=LOGF{QR/QF) /PN

NP=0Q

NP=NP+1

S2=QF *EXPF (T2#PHI1)

S3=QR#EXPF (T3#PHI 1)
PHI1P=PHI1-(S2-83-1¢)/(T2%#52-T3%53)
ERP=ABSF(PHI1P/PHIl1-1le)
PHI1=PHI1lP

IF(ERP-EPS)50+50,68
[IF(NP-30165+69+69

NC=0

WRITE OUTPUT TAPE 3,02
RETURN
IF(LFM=-1134,32,32

DO 33 J=1yLFM

TCP(J)=0e

DO 35 JsLFsL
TCP(J)=CRIJ)*EXPF(T2%PHI (J) ) -CPJ)#EXPF (T3%PHI(J))

RETURN

DO 41 J=LFsLsINC
TCP(J)=CRUJIY*EXPF(T2#(PHIS(J)+PHIL) ) -CP(JIREXPFIT3* (PHIS(J) +PH11))
RETURN

END
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01 SUBROUTINE PHIFE

SUBROUTINE FOR INITIAL ESTIMAIt ur PHI — UNIFORM CONCENTRATION

DISTRIBUTION (CASE 5) ~ 18 JUN 63 - E A GRENS

DIMENSION Z(5)sV(5)9P(5)9G(5)9sPHI(250)sDUML(2250)DUM2(1250)»

1 DUM3(10)

COMMON DUML1 s PHI sDUM2 s ALFAsHILFILoNCoPNyPCIPEWZsViPr0OsBETASDELTAY

1 DUM3 3 IRy IPsNsMT s CIGNORsKTYPE sKEY s KFLD9KINIT»PHIFAC
C2 T2=ALFA*PN

GO TO (05520)sKINIT
05 IF(IR)06506+07
06 EC=1l. )

GIR=G(NC)

GO TO 08
07 EC=1.-BETA*DELTA*(V(IR)/G(IR)=ABSF(PN)/(ABSF(Z(NC))+ABSF(Z(IR))

1 *G(IR)))/P(IR)

GIR=G(IR)
08 CEF=(1e+0e002*BETA+0s05*EC*GIR/BETA)/ (EC*GIR+0+002*BETA

1 - +0e05%EC*GIR/BETA)

ETC=(0s4*BETA+BETA*LOGF (BETA)/10e+0e1*EXPF (~BETA) ) *¥CEF+1.

GO TO (11912)sKTYPE '
11 SS=PCH*EC/ETC

PHIJ=-LOGF (S8S5)/T2

GO TO 15
12 BS=SQRTF(20.*BETA/PC)

PHIJU=2e2%BS/(PN*(1e40e27*LOGF(10e*EC*GIR)+06025%35%B8S))
15 DO 16 J=1lsyl
16 PHI(J)=PHIJ*PHIFAC

RETURN
20 GO TO (21+22)+KTYPE
21 PHIJ=-LOGF(PC)/T2

GO TO 15
22 PHIJ=LOGF( (1e+SQRTF(le+4¢%PCHPC))/(24%PC))/T2

GO 70 15

END
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APPENDIX V.

Steady State Behavior of Cadmium Anode (5N KOH)

The steady state behavior of the cadmium anode example,
as calculated according to the one dimensional model, is
contained in this appendix. For each case treated a graph
is included presenting curves of transfer current distribu-
tion, overpotential, and concentration as functions of

1 depth in the porous electrode. The non-dimensional variables

are used and overpoédtential is presented as a ratio to its

value, @o, at the electrode face (electrode overpotential).
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APPENDIX VI.

Transient Behavior of Cadmium Anode (5N KOH)

The transient behavior of the cadmium anode example,
as calculated according to the one dimensional model, is
contained in this appendix. For each case treated a graph
1s included presenting plots, vs. elapsed time since circuit
completion, of transfer current density at Y = 0, electro-
lyte concentration at Y = 0.1, and electrode overpotential.
-The non-dimensional variables are used and overpotential

is presented as a ratio to its steady state value.
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APPENDIX VIT.

Steady State Behavior of
Ferri-ferrocyanide Cathode (2N NaOH)

The steady state behavior of the ferri-ferrocyanide
cathode example, as calculated according to the one dimen-
sional model, 1s contained in this appendix. For each
case treated a graph i1s included presenting curves of trans-
fer current distribution, overpotential, and reactant and
product concentrations as functions of depth in the porous
electrode. The ron-dimenslional variables are used and
overpotential is presented as a ratio to its value, ®0, at

the electrode face (electrode overpotential).
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APPENDIX VIII.

Transient Behavior of
Ferri-ferrocyanide Cathode (2N NaOH)

The translent behavior of the ferri-ferrocyanide
cathode example, as calculated according to the one dimen-
sional model, is contained in this appendix. For each case
treated a graph is included presenting plots, vs. elapsed
time since circult completion, of transfer current density
at Y = 0, reactant and product concentrations at Y = 0.1,
and electrode overpotential. The non-dimensional variables
are used and overpotential is presented as a ratio to 1its

" steady state value.
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‘Exchange current density in electrode reaction (amp/cmv

NOTATION

English TLetters

Coefficient of Cj in overpotential expression
Specific surface of matrix (em™1)

Term of overpotential expression not involving CJ linearly
Concentration of species J (dimensionless) = cj/c;
Concentration of species J (gmol/cm3)

Concentration of specles J in bulk electrolyte (gmol/cm3)
Diffusion coefficient of species J (cmz/sec)

Symbol for electron

Faraday's constant (96,500 coul /equiv)

Time increment (dimensionless) at step 1

Distance increment (dimensionless)

Current density in electrolyte (dimensionless) = 1/i¥
Current density in electrolyte (amp/cmz)

%)

Transfer current density (amp/cmz)

Current density in electrolyte at pore entrance (amp/cmz)
Index for space variable Y

Index for time variable 7T

Boltzmann constant (1.38 x 10716 erg/°K)

(144) /h+1)

Value of J at Y=0 (= A/h+l)

0

Value of J at Y=1 (

Thickness (or half thickness) of porous electrode model(cm)
Symbol for speciles |}
Flux of species J (gm01/cm2—sec)



Number of Faradays of charge transfered per gmol of
reaction (positive for cathodic)

Porosity

Gas constant

General position vector

Source term for species J (gmol/cms-sec)
Temperature (°K)

Time (sec)

Mobility of species J (cm/sec-dyne)

Electrolyte velocity (cm/sec)

Distance into porous electrode (dimensionless) = y/ﬂ
Distance into porous electrode (cm)

Charge number of species j

Greek Letters

Transfer coefficient in overpotential expression
o)
i*ﬁ/nFchk
0,0
CJ/Ck
Equivalent transfer layer thickness (dimensionless) = 5/L
Equivalent transfer layer thickness (cm)

19 coul)

Electronic charge (1.60 x 10~
Overpotential parameter
Dispersion angle of pore structure
Electrolyte conductivity (dimensionless)
Fj g_/h2

Viscosity (poise)

Stoichiometric coefficient of specles J

222



2 o)
alt io/nFchk

D, /Dy
Time (dimensionless) = Dkt/ﬂ2
Potential in electrolyte (dimensionless) = F(¢-¢e)/RT

& evaluated at ¥Y=0
o - @leﬂA

Potential in electrolyte (volts)

Equilibrium electrode potential at cg

€/p

Tortuosity factor of pore structure

(volts)

Subscripts

Speciles in electrolyte identification

‘Product species

Reactant speciles

Superscripts

Pertaining to superficlal or exterior measured quantities
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